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In temperature/emissivity estimation from remotely measured radiances the general 

assumption is that scene elements represented by pixels in fact have a single 

emissivity spectrum and are isothermal. Thus, estimated temperatures and emissivities 

are the effective values that would be found if these simplified assumptions were met. 

In reality, the physical scene is neither homogeneous nor isothermal, and the effective 

values are not strictly representative of it. This dissertation is devoted to thermal-

infrared radiosity and a heat-diffusion model used for predicting effective emissivity 

spectra and radiant temperatures for rough natural surfaces, which allows one to 

estimate discrepancies between effective and actual values. Computer model results 

are compared to analytic model results in order to verify that the computer model is 

working properly. The model is validated against spectra measured in the field using a 

hyperspectral imaging spectrometer and a cm-scale DTM of the test scene acquired 

using a tripod-based LiDAR. The discrepancies between analytical and modeled 

values are less than 0.01%. Modeled emissivity spectra deviate from the measured by 

no more than 0.015 emissivity units. Modeled kinetic temperature on average deviates 

from measured by less than 1K over the course of a day. Possible applications of the 

developed model in remote sensing, planetary science, and geology are described. 
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CHAPTER 1:  INTRODUCTION 

In recent decades remote sensing has become an important instrument for geological 

and environmental research, especially by providing access to previously inaccessible 

or dangerous areas not only on Earth, but on other planets as well. In particular, 

thermal-infrared (TIR) remote sensing is commonly used for soil development, 

erosion studies, etc. Remotely sensed TIR data is used to determine land surface 

kinetic temperatures and emissivities. In turn, the latter are a common diagnostic of 

surface composition, especially in the case of the silicate minerals that make up much 

of the land surface (Gillespie et al., 1998). Therefore, accurate determination of 

surface emissivities is of primary importance. 

In TIR imaging it is necessary to integrate the radiant flux from the scene 

over the pixel projected on the ground, and then use one of several algorithms (e.g., 

Gillespie et al., 1998; Wan & Li, 1997; Sobrino & Li, 2002; Jiménez-Muñoz et al., 

2006) to estimate effective temperatures and emissivities for the surface. For 

multispectral data and under the assumptions that the surface is smooth, 

homogeneous, and isothermal, values of the effective parameters are commonly 

within a degree or two, or within ~0.015 emissivity units, of the values measured in 

situ (e.g., Gillespie et al., 1998). A primary goal of this doctoral research is to 

quantify what happens if these fundamental assumptions are violated. These answers 
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will become even more important as technology improvements allow imaging with 

increasingly higher spatial and radiometric resolutions. 

Some studies have addressed simplified versions of the general surface 

heterogeneity problem. Dozier (1981) estimated snow cover assuming that the pixel 

represented a binary mixture of snow-covered and bare components; Pieri et al. 

(1990) applied similar reasoning to determine temperatures for unresolved lava 

effusions viewed against a background of cooled lava; and Gustafson et al. (2003) 

considered extraction of temperatures of unresolved stream elements. All these 

studies used the simplifying assumption that the scene consisted of two unresolved 

components, each homogeneous. Gillespie (1992) considered the more general case in 

which the scene contained multiple spectral endmembers, but nevertheless assumed 

each pixel was isothermal. Ramsey & Christensen (1992, 1998) also modeled spectral 

mixtures, but used linear mixtures of emissivities rather than spectral radiances. 

Several terrestrial studies investigated the effects of assuming an isothermal field of 

view (FOV) on TIR data (e.g. Balick and Hutchinson, 1986; Smith et al., 1997; Zhang 

et al., 2004; McCabe et al., 2008). These studies have typically focused on the effects 

of vegetation and directionality on surface temperatures derived from broadband 

measurements. Due to the fact that variation on sub-pixel scale is primarily due to 

vegetation rather than slopes on bare surfaces, the anisothermality were not linked to 

roughness. Bandfield, 2009 investigated slopes in martian apparent surface emissivity 

observations collected by the Thermal Emission Spectrometer (TES) and Thermal 
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Emission Imaging System (THEMIS). This slopes were attributed to misrepresenting 

the surface temperature, either through incorrect assumptions about the maximum 

emissivity of the surface materials or the presumption of a uniform surface 

temperature within the FOV. 

In this research, I investigate the dispersion of temperatures and emissivities 

that occur as the assumed conditions – that scene elements are isothermal and 

smooth – are relaxed. Previous studies have used simulated scenes to address this 

problem. However, Weeks et al. (1996) showed that although roughness 

parameterizations (e.g., root-mean-squared (RMS) roughness, elevation mean 

values) of random noise and natural scenes might be the same, the 

temperature/emissivity (T/ε

differ. Therefore, simulated terrain must be used with caution. Here I report on the 

findings relevant to radiant temperature, from analysis of thermal-infrared images 

(TIR: 8 – 14 µm) and digital terrain models (DTMs) at the 1 – 10 cm scale, the scale 

at which the basic building blocks, such as gravel and jointed bedrock, of the 

landscape are resolved. The discussion is restricted to unvegetated surfaces. 

Thermal-infrared ground-leaving radiance comprises direct ground-emitted 

radiance and reflected radiance from the atmosphere and neighboring scene elements.  

The reflected radiance reduces the apparent emissivity contrast (“cavity effect”) in 

remotely estimated emissivity spectra because reflectivity ρ and emissivity ε are 

complementary (Kirchhoff’s law).  By ‘emissivity contrast’ I mean the range of 
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emissivity values within a spectrum.  For an ideal cavity, approximated in figure 1(a) 

by a mine adit (coarse scale) and in figure 1(c,d) by cracks in a rock (fine scale), the 

TIR radiance spectrum figure 1(b) approaches that of an ideal blackbody, regardless 

of composition. 

If roughness at either topographic or subpixel scales is not accounted for in 

image analysis, it is possible to confuse rough surfaces with smooth surfaces of 

intrinsic low emissivity contrast, or with mixtures of rocks having high and low 

emissivity contrast.  Uncorrected, these ambiguities can lead to uncertainty in surface 

compositions and abundances inferred from remotely acquired thermal images.  Not 

taking roughness effects into account may also lead to inaccurate estimation of 

surface kinetic temperatures, which are important for energy-balance studies. 

Cavity effects from resolved, coarse-scale topography can be corrected with a 

DTM and a TIR radiosity model, but effects from unresolved cavities require a more 

elaborate protocol because the fine-scale roughness cannot be measured directly from 

remote-sensing data.  Compensation for this latter effect of subpixel roughness on 

thermal images does not appear to have previously accomplished.  Another goal of 

this research is therefore to define an approach for accounting for fine-scale cavity 

effects in thermal images of natural surfaces, and to test it with high-resolution field 

data. 
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Figure 1.  Telops, Inc., Hyper-Cam TIR data, Owens Valley, CA, USA (range: ~25 

m).  a) False-color image ~10 m across (RGB= 10.87, 8.59, 8.26 µm).  b) Radiance 

spectra of schistose (1) and quartzite (2) wall rocks, the adit (3), schistose (4) and 

quartzite (5) parts of a 1 m rock fallen from the cliff, and deep cracks in the rock (6).  

c) Photo of the rock (range: ~9 m; image is ~80 cm across).  d) False-color TIR 

image of the same rock (RGB same as in a). 
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This dissertation consists of following parts. In Chapter 2, a radiosity model 

adapted for TIR measurements and coupled with a heat-diffusion model is presented. 

Radiosity is the total radiance from the surface element, consisting of energy emitted 

by this surface element directly and the energy reflected from adjacent surface 

elements. Radiosity models for visible and near- and shortwave-infrared wavelengths 

include reflected direct sunlight (Li, 1997), but this term is negligible in the TIR. The 

model presented in this dissertation takes into account the effects of a surface 

geometry, changing illumination geometry, thermo-physical and spectral properties of 

the surface material, multiple-scattering effects, sensible heat transfer at the surface-

air boundary, and downwelling sky radiation. I assume all differential surface 

elements are Lambertian: perfect diffusers that emit and reflect radiation isotropically. 

Chapter 2 contains description of the model and verification of its performance for 

simple analytical case.  

Chapter 3 focuses on the model validation. Well-controlled detailed thermal 

observations on natural and artificial surfaces were used for validation. The strategy 

was then to reproduce calculated and observed effects with the radiosity model. Three 

validation experiments were conducted using a simply shaped gabbro rock as well as 

a physical model made of Plaster of Paris (CaSO4 2H2O ± CaCO3). 

In Chapter 4 model results are presented. Distributions of kinetic temperatures 

and radiosities over the course of day and night were calculated for a set of natural 

surfaces of different types, such as alluvial surfaces, bedrock, and lava flows. An 
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example of the results for a bedrock surface is demonstrated. Transfer functions 

relating the contribution of cavity radiation from landscape elements of different 

roughnesses were defined for different types of natural surfaces. 

Chapter 5 discusses applications for the developed TIR radiosity and heat-

diffusion model. The main application is compensation for sub-pixel roughness 

effects in TIR images. The model has also been used for 3-D modeling of icy 

landscapes evolution on the Gallilean and Saturnian satellites and kinetic temperature 

predictions for solar stress and fracture in exposed rocks. Finally, Chapter 6 gives 

brief summary of the research described in this dissertation. 

I use the term ‘emissivity’ throughout the dissertation.  Here I give an 

explanation of different types of emissivity and symbols used for each of them.  

Emissivity is defined as the ratio between the measured surface-emitted radiation and 

the radiation expected from a blackbody at the same kinetic temperature. The 

emissivity of a material (ε) is an emissivity value that would be measured for a 

smooth surface. ‘Apparent emissivity’ (εapp) is an emissivity value for a rough surface 

estimated from measured spectral radiance without correction for cavity effect. 

‘Modeled apparent emissivity’ (εmod) is an emissivity value for a rough surface 

represented by a DTM and includes the effects of multiple reflection and cavity 

radiation.  I calculate εmod from the spectral radiance estimated by the TIR radiosity 

model presented here. The qualitative difference between εmod and εapp is that εmod is 

not affected by roughness at scales finer than resolved by the DTM, whereas εapp is 
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influenced by roughness at all scales. Ideally, correction for the cavity effect should 

allow one to calculate ε εapp, provided that all other corrections were done 

accurately. The difference between modeled and ‘material’ emissivity is designated as 

Δε = εmod − ε. 

Finally, the content of this dissertation is based on the following papers: 

 Danilina, I., Mushkin, A., Gillespie, A. R., O'Neal, M. A., Abbott, E. A., 

Pietro, L. S., Balick, L. K., 2006.  Roughness effects on sub-pixel 

radiative temperature dispersion in a kinetically isothermal surface.  

Abstract Book, Conference on Recent Advances in Quantitative Remote 

Sensing II (RAQRS II), University of Valencia, Spain, Sept. 25-29, p. 31. 

 Danilina, I., Gillespie, A., Smith, M., Balick, L., Abbott E., 2010. 

Thermal infrared radiosity and heat diffusion model verification and 

validation. Proceedings of the 2
nd

 Workshop on Hyperspectral Image and 

Signal processing: Evolution in Remote Sensing, Reykjavik, Iceland, 14-

16 June. 

 Danilina, I, Gillespie, A, Balick, L., Mushkin, A., Smith, M., Blumberg, 

D, 2012. Compensation for subpixel roughness effects in thermal infrared 

images, International Journal of Remote Sensing, in press. 

 Danilina, I, Gillespie, A, Balick, L., Mushkin, A., O’Neal, M., 2012. 

Performance of TIR radiosity and heat-diffusion model for subpixel 
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radiant temperature estimation over the course of a day, Remote Sensing 

of Environment, in press. 
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CHAPTER 2:  THERMAL-INFRARED RADIOSITY AND HEAT-

DIFFUSION MODEL 

 

In this chapter a radiosity model adapted for TIR and coupled with a heat-diffusion 

model is presented. First, a short description of types of data used for model 

calculations and validation is given. The main part of the chapter is dedicated to the 

detailed description of the developed model. Finally, the model performance is 

verified with a simple analytical case. 

2.1   Approach and data  

Natural scenes used in my experiments were 0.5-m to 10-m bedrock and alluvial 

landscapes in the Mojave Desert, California, USA (Death Valley and Owens 

Valley).  At each field site, I generated high-resolution digital terrain models 

(DTMs) (0.5 – 5 cm resolution) from tripod-mounted LiDAR (Trimble GS200) 

measurements. I developed the radiosity model for predicting over the course of a 

day the temperature effects due to scene roughness, and used radiosity rather than a 

ray-tracing approach because, although computationally expensive, it is better suited 

for Lambertian surfaces and its results are independent of the observer position 

(Goral et al., 1984). Hyperspectral TIR images of selected sites were measured at  
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Figure 2.  Examples of data used. a) Alluvial fan surface (Death Valley). From left to 

right: photo of the surface, DTM of the surface (surface size is 0.6 m by 0.75 m, 

DTM resolution is 1 cm, number of pixels is 4636), shaded relief image.  b) Natural 

bedrock surface (Owens Valley). From left to right: photo of the surface, DTM of the 

surface (surface size is 1.16 m by 1.36 m, DTM resolution is 2 cm, number of pixels 

is 3944), shaded relief image. On the bottom there is the oblique broad-band image 

of the surface made by FLIR camera taken at 17:00. Note different perspective of the 

FLIR image compared to the photo and DTM. 
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various view angles and times of day using the Telops Inc. First Hyper-Cam sensor. I 

also acquired radiant-temperature images using a FLIR broadband TIR camera (FLIR 

Systems Inc.) with NEΔT≈0.3 K. Images made before sunup and during the day were 

used for testing the model predictions. FLIR data were used whenever hyperspectral 

Hyper-Cam data were unavailable. Examples of data used are given in Figure 2. 

2.2   Radiosity Model 

In this research, I consider the case of thermal radiance from a homogeneous surface 

during the course of a day, including effects of changing illumination geometry, 

thermo-physical properties of the surface material, multiple-scattering effects, 

sensible heat transfer at the surface-air boundary, and downwelling sky radiation. I 

assume all surface elements are Lambertian: perfect diffusers that emit and reflect 

radiation isotropically, according to Lambert’s law (L =ρ I cosφ, where L is the 

reflected radiance, ρ is the surface reflectivity, I is the irradiance, and φ is the angle 

between the illuminating ray and the local surface normal, or the incidence angle). 

This study makes use of the wavelength range from 8 μm to 14 μm (i.e., the 'thermal' 

part of the spectrum). Emissivity is generally regarded as independent of 

temperature. Here for simplicity I describe the basic form of the radiosity model 

formulated with the assumption that our surfaces are graybodies within this interval: 

i.e., ε is independent of wavelength. Modifications of the model, capable of 

accommodating surfaces with different spectral signatures in the TIR spectral region, 
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were also developed and used for various calculations, including model validation 

experiments described below. 

The general form of a radiosity model in our case is written as: 

 

, 1,2B R MS i n
i i i

,     (1) 

 

where Bi, W/m
2
 – radiosity of a surface element i; 

Ri, W/m
2
 – thermal energy emitted from a surface element;  

MSi, W/m
2
 – multiple-scattering component (energy bounced one or more 

times among surface elements);  

n – number of surface elements.  

The radiation emitted by a blackbody surface at any given wavelength is 

described by Planck’s Law. But natural surfaces usually do not behave as perfect 

emitters, so Planck’s function must be modified by including ε. Thus, the 

hemispheric spectral radiance emitted from each surface element is given by 

 

2

2

1

1

5

1
, 1,2

1i
i c T

c
R d i n

e
,    (2) 

 

where 16 2

1 3.74 10c W m  – first radiation constant; 
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2 0.0144c m K  – second radiation constant; 

6

1 8 10 m  – lower limit of the thermal part of the spectrum; 

6

2 14 10 m  – upper limit of the thermal part of the spectrum; 

T, K – kinetic temperature of a surface element.  

The main complication of the radiosity model is the calculation of the 

multiple-scattering component. The amount of energy reflected from adjacent 

surface elements is determined by their geometric relation, which can be established 

using slope and aspect information derived from high-resolution DTMs. This 

geometric relation is called the “form factor” and is defined as fraction of energy 

leaving one surface element and reaching another (Sparrow, 1963; Sparrow & Cess, 

1978). 

The full radiosity model is written as: 

 

1

, , 1,2
n

i i j ij

j

B R B F i j n ,    (3) 

 

where ρ – reflectivity of a surface; 

Fij – dimensionless form factor from surface element j to surface element i. 
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Figure 3.  Schematic plot illustrating terms used in the form-factor equation. 

 

There are n unknown radiosities and n linear equations associated with 

individual pixels. Rearranging equation (3), the n linear equations can be written in a 

matrix expression: 

 

11 1 1 1

21 2 2 2

1

1

1

n

n

n nn nn

F F B R

F F B R

B RF F

   (4) 

 

For the surfaces elements with a modeled temperature, R is calculated using 

Planck’s Law (equation 2). The key step of the radiosity model is determining the 

form-factor matrix F. The basic equation for a form-factor is  
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2

cos cosi j

ij iF dA
d

,     (5) 

 

where 
jiF  – form factor from surface element; j to surface element i; 

θ – projection angle between the normal of a surface element and line, linking 

the pair of elements together;  

Ai, m
2
 – area of element i;  

d, m – the distance between two elements.  

Using equation (5), the form-factor matrix F (eqn. 3 – 5) can be constructed. 

Terms from equation (5) are illustrated in Figure 3.  

In order to incorporate heating by the sun into the model several steps are 

necessary. First, for daytime, solar radiation on the surface is modeled. It depends on 

the changing position of the sun (elevation and azimuth) over the course of a day, 

geometry of the surface, and atmospheric conditions (air temperature, cloud fraction, 

and other factors). The geometry of the surface determines the solar radiation 

incidence angles for each given sun position, as well as which surface elements are 

illuminated. Using the DTMs, a matrix containing this information is formed. For 

night time this first step is not required. 
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Second, the kinetic temperature for each surface element has to be 

determined. In order to do this, the thermal inertia of the material needs to be 

considered. This amounts to considering heat flow inside the material. For simplicity 

I neglect the three-dimensional nature of the heat diffusion and consider only the 

flux normal to the surface of the material. This process is described with the 1-D 

(vertical) heat-diffusion equation.  

 

2

2

( , ) ( , )T z t T z t
k

t z
,      (6) 

 

where z, m – depth in the temperature profile,  

t, s – heating time,  

k, m
2
/s – thermal diffusivity of the material.  

Then, the surface heat-balance equation, including incoming solar radiation, 

downwelling sky radiation, sensible heat, energy losses for the radiation from the 

surface, heat flux into a material, and multiple-scattering component, is used as a 

boundary condition on the surface. 

 

4

0

(0, )
( ) cos( ) (0, ) 0

(1 )
air vis

T t
T T S I i MS T t

z
,  (7) 
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where α, W/(m
2
·K)  – heat transfer coefficient,  

Tair, K – ambient air temperature,  

S , W/m
2
 – downwelling sky radiation,  

εvis – surface emissivity in the VNIR part of the spectrum. 

I0, W/m
2
 – incoming solar radiation flux,  

φ – incidence angle of solar radiation,  

MS, W/m
2
 – multiple scattering component,  

σ, W/(m
2
·K

4
) – Stefan-Boltzmann constant,  

κ, W/(m·K) – thermal conductivity.  

 

The heat-transfer coefficient and downwelling sky radiation term can be 

estimated empirically (Zhang et al., 2004; Brutsaert, 1975). As main part of solar 

energy incident on the surface is concentrated in visible and near infrared (VNIR) 

part of the spectrum, it is necessary to use appropriate value of emissivity εvis in the 

part of the surface boundary condition describing incoming solar energy. Value of 

εvis is normally different from ε. The lower boundary condition is considered to be 

constant temperature at some appropriate depth below the level reached by the 

diurnal heating wave (i.e. ~20 cm for dry soils). Here, the model uses 25 1 cm layers 

in order to estimate surface kinetic temperature and temperature profiles below the 

surface. 
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Finally, a matrix representing the kinetic temperature of each surface element 

is used as an input parameter for the previously described radiosity model to get a 

new distribution of radiant temperatures over a given surface. The steps discussed 

above have to be repeated for different sun positions (each one using the results of 

the previous one as its initial condition) in order to investigate dispersion of radiant 

temperatures over the course of a day. For day time, change in the sun position and 

new temperature and radiosity distributions are calculated every 30 minutes. For 

night time, time step only depends on ambient air temperature change. 

 

2.3   Model verification 

For the model verification I used a simple case of radiation between a single surface 

element (referred to as element from now on) and a large finite wall, parallel to the 

element and facing it. The element and wall had the same temperature and 

emissivity. The distance between the element and the wall must be large compared 

to the element size. This was an analytic model, not a physical model. Simple 

geometrical considerations provide the apparent emissivity, εapp, of the element as a 

function of its emissivity, ε  

 

2

2 2 2 2

X/2 Y/2

-X/2 -Y/2

1
( )

app

h
dx dy

h x y
,   (8) 
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Figure 4.  Schematic plot illustrating geometry assumed in the apparent emissivity 

calculation for the case of radiation between a single surface element and a large 

finite wall, parallel to the element. 

 

Here ρ=1-ε is the reflectivity of the wall and the element, and the meaning of 

geometrical parameters h, X and Y, entering Equation 8 is illustrated in Figure 4. 

Note that εapp=ε=1 in the case of the black body (ε=1, ρ=0) 
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I also generated a DTM for the described layout, and compared the radiosity 

model results to the analytic solution. For all considered wall sizes the errors 

between modeled and analytical values were less than 0.01% (Table 1). 

 

Table 1.  Comparison of analytical and model calculations of the apparent emissivity 

(ε = 0.87); error is defined as mod( ) /app app . Distance between the wall and the 

element was 0.022 m, while the element size was 0.002 m by 0.002 m. 

 

Wall size, cm 

Analytical 

calculation 

Model calculation Error, % 

2 by 5 0.9097 0.9096 0.0070 

3 by 7.5 0.9293 0.9294 0.0095 

4 by 10 0.9432 0.9432 0.0006 

 

In his chapter, the developed radiosity model adapted for TIR and coupled with 

a heat-diffusion model was presented. I also described field data used in the study and 

demonstrated that the model performs as expected in the verification experiment. 

Next, it is necessary to validate the model with field measurements before any 

applications. This is the main focus of Chapter 3. 
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CHAPTER 3: VALIDATION OF THE TIR RADIOSITY AND HEAT-

DIFFUSION MODEL PERFORMANCE 

 

This chapter is dedicated to validation of TIR radiosity and heat-diffusion model 

performance. Whereas verification described in section 2.3 focuses on determining 

whether the developed code performs as expected, in other words answers the 

question “Is the model built right?”, validation answers the question “Is the built 

model right?”, i.e. demonstrates model’s ability to accurately simulate real world 

processes. For the model validation well-controlled detailed thermal observations of 

natural and artificial surfaces were used. The strategy was then to reproduce 

calculated and observed effects with the radiosity model. 

For the first of the validation tests of the model I used Hyper-Cam 

hyperspectral images of a rectangular hypersthene gabbro rock (dominantly ortho-

pyroxene and calcic plagioclase) with a relatively smooth surface into which two 

holes had been drilled (Fig. 5). This simple cylindrical cavity allowed me to easily 

trace the effect that surface geometry has on the temperature, radiosity, and apparent 

emissivity during the course of a day, and also facilitated analytical estimation of 

this effect.  

Hypersthene gabbro has overlapping Reststrahlen bands in the TIR, the main 

ones being at 8.67 and 9.9 µm according to ASTER spectral library 
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(http://speclib.jpl.nasa.gov/speclibdata/jpl.nicolet.rock.igneous.mafic.solid.ward41.s

pectrum.txt). Apparent emissivity spectra were recovered from the Hyper-Cam 

images using contact temperatures measured with thermocouple at the time of image 

acquisition. For the smooth surface of the rock there is a dip in the recovered 

spectrum that deepens from ~ 0.94 at the sides to ~ 0.89 in the middle of the 

spectrum. In the drilled holes however, the spectrum has significantly reduced 

contrast. Thus, the cavities drilled on the gabbro surface approximate blackbodies 

due to the multiple scattering inside them. My goal was to reproduce this effect 

within the radiosity model. 

The rock measurements were about 18 cm by 10 cm by 6 cm. The holes were 

approximately 3 cm deep and 2 cm in diameter. A DTM of the rock with 2-mm 

resolution was measured with NextEngine 3-D scanner for use in the radiosity 

model. In the calculation ε was prescribed to have a value of 0.89 (depth of the 

Reststrahlen band measured with Hyper-Cam). Figure 5e shows modeled emissivity 

distribution over the rock surface. Spectral contrast is reduced inside the cavities and 

εmod increases up to 0.95. This shows good qualitative and quantitative agreement 

between the model results and the measurements. 

For another validation experiment I created a simply shaped physical model 

from Plaster of Paris (CaSO4 2H2O ± CaCO3). To avoid confusion with usage of the 

word ‘model’ I will call it ‘plaster template’ from now on. The surface of the plaster  

http://speclib.jpl.nasa.gov/speclibdata/jpl.nicolet.rock.igneous.mafic.solid.ward41.spectrum.txt
http://speclib.jpl.nasa.gov/speclibdata/jpl.nicolet.rock.igneous.mafic.solid.ward41.spectrum.txt
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Figure 5.  a) Photo of the gabbro rock in the field. b) Hyper-Cam image of the rock, 

RGB = 9.6, 8.9, 8.3 µm. c) Perspective view of the rock surface. d) Spectra estimated 

from Hyper-Cam measurements. e) εmod calculated by the model. For this example, ε 

of the surface was 0.89. 

 

template had two horizontal planes connected by a vertical wall ~7 cm high. The 

upper plane had a cavity ~8 cm deep and ~3 cm in diameter (Fig. 6a). The plaster 

has a single Reststrahlen band centered near 8.6 µm. Measured in the field, εapp in 

the band was as low as ~0.84; εapp of the continuum spectrum was ~0.94. 

For the experiment the plaster template was placed on an ~east-facing slope 

of about 30° (Figure 6). Hyper-Cam hyperspectral images of the surface were 

measured over the course of a day. From these, both εapp and radiant temperatures of  
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Figure 6.  a) Hyper-Cam imaging spectrometer measuring the plaster template in 

the field. b) Hyper-Cam close up of the upper plane of the plaster template, with the 

hole. c) Hyper-Cam close up of the wall and the lower plane of the plaster template. 

For b) and c) RGB = 8.0, 8.7, 10.0 µm. Color differences on the planes are due to 

the texture of the surface. The diagonal line in b is a crack in the plaster. d) εapp 

spectra from Hyper-Cam measurements. e) εmod spectra calculated by the model for 

four wavelengths: 8.0, 8.6, 9.6, and 11.0 µm. 

 

surface elements were derived to demonstrate changes due to solar heating and 

multiple reflection among elements at different kinetic temperatures. 

I generated a 3-mm/pixel synthetic DTM of the plaster template from its measured 

dimensions, slopes and aspects, and used it to drive the radiosity model. I prescribed 

the ε at four wavelengths (8.0, 8.6, 9.6, and 11.0 µm) as the value measured for the 

flat plaster surface (ε = 0.94, 0.85, 0.93, and 0.94, respectively). These wavelengths 
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were chosen because they capture the basic spectral shape and comprise a minimal 

data set. 

Figure 6 demonstrates the agreement between εapp and εmod spectra for the parts 

of the plaster template differently affected by multiple scattering. For the planes and 

hole, differences between the measured and modeled spectra at these wavelengths 

were less than 0.015. For the wall the discrepancy is about 0.03. This is explained by 

the impossibility of exact reproduction of the actual experiment geometry with the 

synthetic DTM. In the synthetic DTM the angle between the wall and the lower plane 

was >90°, which decreased multiple-scattering effects at the wall relative to the actual 

measurement. Also, during the experiment the wall 'saw'’ the ground due to the ~30° 

slope of the plaster template, which increased the apparent emissivity at the wall due 

to radiance reflected from the warm ground. This was not taken into account in the 

radiosity model. The fact that the ε (e.g. 0.85 at 8.6µm) of the surface varies greatly 

from both εapp and εmod illustrates the importance of the cavity effect, as well as the 

ability of the TIR radiosity model to reproduce it in a qualitative manner. 

In order to validate the heat-diffusion part of the model I used a plaster template 

similar to the one described above. Kinetic temperatures at different areas of the 

template were measured over the course of a day with a thermocouple. A synthetic 

DTM of the template was then generated and used as an input to the radiosity model 

in order to predict temperature distributions over the course of a day. The experiment 

was held on December 9
th

 2011 near town of Keeler in Owens Valley, California. Sun  
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Figure 7.  Heat-diffusion part of the model validation experiment results. a) 

Measured and modeled kinetic temperatures over the course of a day for the upper 

plane of the plaster template; b) for the lower plane of the plaster template; c) inside 

the hole located on the upper plane of the plaster template; d) for the south-facing 

wall of the plaster template. 

 

elevations and azimuths were calculated for the experiment date and location and used 

in the model calculation, as well as typical values for thermal properties of hardened 

gypsum (Tesarek et al., 2003). The results of the experiment are illustrated in Figure 

7. 
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Figure 7 (a-d) compares temperatures measured in the field to those predicted 

by the model for different parts of the template. For the planes and hole, average 

differences between measured and modeled temperatures were less than 1 K. For the 

wall the average discrepancy was 1.12 K. The reasons that agreement for the wall is 

not as good as for the different areas of the template are likely the same as for the 

previous validation experiment and are described above. Other possible reasons for 

the discrepancies between measured and modeled values over the course of a day for 

all the areas of the template are uncertainties in thermal properties of the plaster 

template and instrumental errors in field temperature measurements. Despite these 

inexactitudes, the model demonstrated ability to closely reproduce shape and 

magnitude of diurnal temperature curves. 

Thereby, in this chapter three validation experiments for the TIR radiosity and heat-

diffusion model were described. The model demonstrated satisfactory results in all 

three and was able to predict diurnal kinetic and radiant temperature distributions with 

good accuracy. Next, Chapter 4 demonstrates examples of the model results. 
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CHAPTER 4:  THERMAL-INFRARED RADIOSITY AND HEAT-

DIFFUSION MODEL RESULTS 

 

In this chapter, examples of the developed TIR radiosity and heat-diffusion model are 

demonstrated. Distributions of kinetic temperatures and radiosities were calculated 

over the course of a day and a night taking into account incoming solar radiation, 

surface geometry, thermal and spectral properties, and atmospheric conditions. 

Danilina et al. (2006) showed that for the isothermal alluvial surfaces, the 

radiosity dispersion and the difference between actual and apparent values increase 

with surface roughness. Figure 8 shows that this tendency holds for anisothermal sun-

heated alluvial surfaces and that εmod changes over the course of the day, as cavities 

change from cooler to warmer than interstices. In addition, Figure 9 demonstrates that 

Δε increases with surface roughness for bedrock and lava flow surfaces as well as for 

alluvial surfaces. However, results for different types of surfaces do not plot on the 

same trend line, which indicates that surfaces of different types should be analyzed 

and treated separately in future model applications. 

The bedrock surface used as an example in Figures 10 and 11 was a fragment 

about 1 m by 1.5 m in size of a granite exposure in Owens Valley, CA. In Figure 10 a 

perspective view of the surface demonstrates the quality of representation of the  
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Figure 8.  a) DTM for alluvial surface in Death Valley. Surface size is ~ 0.8 m by 0.8 

m, pixel size is 0.01 m, RMS roughness is 0.04 m. “Noise” pixels at lower elevations 

are due to the DTM imperfections. b) Instantaneous εmod distribution for the same 

surface calculated at 14:00. ε is 0.9, εmod varies from 0.9 to ~0.95. c) εmod averaged 

over the course of a day for the set of alluvial surfaces of different roughnesses from 

Death Valley. ε was 0.9. Note different time step after sunset. 
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Figure 9.  Effect of surface RMS on Δε in alluvial, bedrock, and lava flow surfaces. 

Value of ε used for the model calculations in all cases was 0.9. All surfaces were 

isothermal at 300K. 

 

natural surface by a high-resolution DTM measured by the tripod-mounted LiDAR. 

Predawn radiosity ranges from about 100 W/m
2
 to about 145 W/m

2
. This is 

the time when the surface is close to being isothermal, and when the main 

differences in radiosity are caused by multiple-scattering effects in the cavities. After 

dawn, sun-facing surfaces (typically tops of the rocks) are heated relative to their 

shadowed counterparts, and the variation of radiosity along the surface is also due to 

the variation in kinetic temperature. At 14:00 the radiosity range is from 140 to 280 

W/m
2
. Figure 10 (d) illustrates the modeled temperature over the course of a day for 

differently oriented facets on the surface. 
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Figure 10.  The radiosity model results for a granite bedrock surface from Owens 

Valley. Pixel size of the surface DTM is 0.02 cm, RMS roughness is 0.18 m, ε is 0.9. 

a) Photo of the surface. b) Perspective surface view generated with Matlab. c) 

Shaded relief image of the surface. The green arrows in a, b, and c indicate direction 

of north. d) Modeled kinetic temperature over the course of a day for differently 

oriented parts of the surface. Note the difference in the time step after the sunset. e) 

Modeled radiosity distributions at different times of day. North is up. Note the 

different radiosity scales for the plots. 
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Figure 11.  The radiosity model results for the same granite bedrock surface from 

Owens Valley, as in Figure 10. Modeled change of mean surface kinetic temperature 

(a), mean surface radiosity (b), radiosity RMS (c), and Δε (d) over the course of a 

day. The stars indicate points on the plots that correspond to 14:00 radiosity 

distribution (see Figure 10). Note the difference in the x-axis time step after the 

sunset. 

 

Figure 11 illustrates radiosity and kinetic temperatures calculated over the course of 

a day and averaged over the surface, as well as root-mean-square (RMS) radiosity 

values and Δε values at different times. Nighttime portions of the plots have been 

compressed compared to the daytime ones due to the longer time step used for the 

modeling after the sunset.  
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The technique commonly used in remote sensing for emissivity retrieval is 

sometimes called “Planck draping.” In it, a blackbody (or graybody) radiance 

spectrum is computed for an upper limiting temperature and then successively 

lowered, “draping” the blackbody spectrum over the scene spectrum (Gillespie et al., 

1998). A typical plot of emissivity over the course of a day derived with this 

technique starts with lower emissivity values in the morning, when rocks on ridges 

and elevated surfaces are heated and high-emissivity cracks are relatively cold. In the 

late afternoon emissivity peaks: the high spots cool off first, so the average 

emissivity is shifted to higher values since the cracks are favored. The experimental 

calculation showed that the emissivity derived from modeled radiosity data using a 

similar technique follows the same pattern.  

However, in the example described here I used radiosities and kinetic 

temperatures calculated by the radiosity model to retrieve εmod over the course of a 

day. The plot of Δε shown in Figure 11 (d) does not mimic the quasi-sinusoidal 

behavior of mean radiosity and mean temperature plots and has two peaks instead of 

one peak over the course of a day. The peaks are observed in the late morning and 

late afternoon, when the dispersion of temperature, and therefore radiosity, is the 

highest. In the middle of the day the sun is high, so both tops of the rocks and  
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Figure 12.  Generalized transfer functions for alluvial(a), bedrock(b), and lava(c) 

surfaces. The functions relate Δε to εapp and were calculated using the TIR radiosity 

model for surfaces with different RMS roughness. 
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cavities get heated and rough surfaces come closer to being isothermal. At this time 

Δε drops by more than 10 %. Supposedly, the two-peaked plot better describes 

behavior of emissivity of natural rough surfaces over the course of a day, because the 

modeled kinetic temperatures I used for emissivity retrieval at each step are more 

accurate than estimations used in the Planck-draping technique. The model results 

demonstrate that the magnitude of roughness effects for TIR measurements of natural 

surfaces varies significantly during the course of the day 

The roughness data and radiosity calculated for a gamut of surface DEMs can 

be related empirically.  It is possible from the radiosity modeling to construct curves 

relating εapp to ε, as in Figure 12. Modeled apparent emissivity (εmod) approximates 

εapp. Therefore, Δε is applied to εapp in order to compensate for the cavity effect. It is 

important that the radiosity calculations are individualized for the actual time and date 

of interest (e.g. TIR image acquisition) to account for the differential solar heating of 

the surface. 

This chapter illustrated TIR radiosity and heat-diffusion model results. An 

example of a full calculated data set was given for a bedrock surface, as well as 

generalized transfer functions for sets of surfaces of different type, which can be used 

in model applications as will be demonstrated in Chapter 5. 
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CHAPTER 5:  APPLICATIONS OF THE TIR RADIOSITY AND HEAT-

DIFFUSION MODEL 

 

The TIR radiosity and heat-diffusion model presented in this dissertation allows the 

estimation of multiple-scattering effects in complex natural surfaces at sub-pixel 

scale, as well as predicting kinetic temperature distributions for such surfaces over the 

course of a day. This is useful for several applications in remote sensing, planetary 

science, and geology. 

 

5.1 Compensation for sub-pixel roughness effects in TIR images 

The fundamental parameter measured in TIR remote sensing is spectral radiance LS: 

 

1
( , ) ( ) ( ( ) ( , ) (1- ( ))( ( ) ( ))) ( ),BBSL T M T S R S   (9) 

 

where LS (Wm
−2

µm
−1

str
−1

) is the spectral radiance measured at wavelength λ 

and surface kinetic temperature T, τ is atmospheric transmissivity, MBB (Wm
−2

µm
−1

)  

is blackbody spectral radiant exitance (defined by Planck’s Law), S
↓
 (Wm

−2
µm

−1
)  is 

downwelling spectral irradiance, R (Wm
−2

µm
−1

)  is the spectral irradiance from 

neighboring surface elements, and S
↑
 (Wm

−2
µm

−1
str

−1
)  is the path spectral radiance.  
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eters τ S
↑ 

pertain to the path between the surface and the spectrometer, short 

in ground-based field experiments; S
↓
 is independent of spectrometer position. 

In general, LS is inverted to find T and εapp τ and S
↑
.  

Some algorithms (e.g., Gillespie et al. 1998) also correct for S
↓
, but in general R – and 

with it the cavity effect – is overlooked since there is no simple way to estimate it. 

Neglecting to correct for R will lead to underestimation of contrast in 

recovered emissivity εapp), regardless of the scale of the roughness elements.  

In his dissertation, Li (1997) showed that in the visible/near-infrared (VNIR) for 

resolved rough topography (1−ε)Rπ
-−1

 can exceed 20% of LS.  Natural surfaces tend to 

have lower reflectivity in TIR than in VNIR, but multiple reflection and cavity effects 

are significant in both spectral regions.  Analysis of gamut of DTMs of natural 

surfaces demonstrated that at the finer, unresolved (subpixel) scales discussed in this 

paper this term can be as much as ~10%. 

Image compensation for coarse-scale roughness uses a TIR radiosity model to 

calculate R(λ).  As stated earlier, the model must accounts for changing illumination 

geometry over the course of a day, thermo-physical properties of the surface material, 

multiple-scattering effects, sensible heat transfer at the surface-air boundary, and 

downwelling sky radiation.  The main driver is a DTM of the topography at the pixel 

scale. The problem for subpixel roughness, discussed herein, is more complex 

because fine-scale (cm) DTMs are commonly not available.  Here I explore a possible 

way around this problem using remotely sensed proxies for roughness. 
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Figure 13.  Flow chart illustrating approach to compensation for sub-pixel roughness effects 

in TIR images. 

 

The image-processing model uses as input the TIR apparent emissivity image 

to be corrected and a co-registered image of subpixel roughness.  In addition, curves 

or transfer functions are required for relating the contribution of cavity radiation from 

landscape elements of different roughnesses, calculated for the time of image 

acquisition using a TIR radiosity model.  The processing procedure uses the 

roughness image to predict the amount of cavity radiation, and then to unmix it from 

the apparent emissivity using standard linear mixing models that have been developed 
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and applied both to the spectral radiance data and to the emissivites.  A flow chart 

illustrating the approach used here is shown in Figure 13. 

Estimating R(λ) requires determining unresolved roughness, pixel by pixel.  

Two approaches have been used: inversion of models relating backscatter to 

roughness in synthetic aperture RADAR (SAR) images, and inversion of models 

relating reflectance lowering caused by unresolved shadows to roughness (Weeks et 

al. 1996; Mushkin and Gillespie 2005).  The SAR approach requires accounting for 

soil moisture; the optical approach requires separating the darkening effects of 

shadowing.  In either, it is necessary to calibrate the image-derived parameters to 

some conventional measure of surface roughness from which R(λ) can be estimated. 

Mushkin and Gillespie (2005) related ASTER nadir- and aft-looking (27.6°) 

near-infrared (NIR) brightness ratios (two-look method) to surface topographic RMS 

independently measured at cm−m spatial scales. For calibration, the RMS roughness 

is calculated from fine-scale DEMs measured at test sites in the field. 

I compared root mean squared (RMS) roughness values for Trail Canyon fan, 

Death Valley, California, USA, derived using the two-look method to the similar 

values derived from RADAR backscatter data (Greeley et al. 1995), using region of 

interest statistics for corresponding areas.  The values demonstrated good subjective 

agreement (Figure 14), but the two-look results showed smaller levels of variability 

within samples. This is explained by the fact that ASTER NIR data do not suffer from  
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Figure 14.  a) RMS roughness image derived using two-look method (Mushkin and 

Gillespie 2005) for Trail Canyon fan, Death Valley, CA, USA.  b) RMS roughness 

image derived from RADAR image (SIR-C, C band, HV polarization) of the same 

area.  c) Correlation between mean RMS roughness for various regions of interest in 

the area derived using two different methods.  Bold line illustrates linear trend.  

Thinner line illustrates actual diagonal.  The error bars represent standard deviation 

within the regions of interest. 

 

‘speckle’ noise as much as RADAR data do.  This is one of the advantages of the two-

look method. 
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The two-look approach to measuring roughness has also been used to help 

select the Phoenix landing site on Mars (Arvidson et al., 2008).  In this case the stereo 

images could be calibrated by field measurements of roughness at Rover sites, and 

compared to boulder counts in high-resolution HiRISE images of parts of the landing-

site candidate areas. 

As shown in Chapter 4, Δε (Figure 11(d)), does not mimic the quasi-sinusoidal 

behavior of mean radiosity and mean temperature plots.  The largest differences are 

registered in the late morning and late afternoon.  In the middle of the day when the 

sun is high Δε drops by more than 10%.  This demonstrates the importance of using a 

TIR radiosity model to predict roughness effects for natural surfaces for any given 

time (e.g. the time of a satellite overflight). Chapter 4 also demonstrates examples of 

εapp to ε transfer functions for natural surfaces of different types (Figure 12).  

In method proposed here, once R has been estimated for a roughness image 

such as Figure 15(a), it is straightforward to subtract it from the measured LS, after 

atmospheric compensation.  The resulting difference is the “ground-emitted spectral 

radiance,” and standard methods can be used to calculate ε from it.  It is also possible 

to use shortcuts, for example if curves have been calculated that relate εapp to ε directly 

(Figure 12).  Again, the roughness image must be used to select the curve for the 

appropriate roughness, pixel by pixel across the image.   

Good quality of registration between the roughness image and the emissivity 

image to be compensated is essential.  For ASTER, however, such quality is hard to  
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Figure 15.  a) ASTER nadir- and aft-looking NIR ratio image for Trail Canyon fan 

calibrated to RMS roughness measured at test sites (two-look method).  Black–white 

range runs from RMS = 0.14 to 0.4.  b) ASTER emissivity image for the same region 

(RGB = 10.6 μm, 9.1 μm, 8.65 μm).  c) Emissivity image compensated for cavity effect 

(RGB = 10.6 μm, 9.1 μm, 8.65 μm).  d) Cavity compensation for QG2 pixel (RMS = 

0.2 m).  e) Cavity compensation for QG3 pixel (RMS = 0.37 m).  Yellow arrows 

indicate location in the compensated image of the pixels used in examples in Figure 

15(d,e). 

 

achieve due to differences in spatial resolution between NIR bands used for sub-pixel 

roughness estimation and TIR bands used for emissivity retrieval. 
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Figure 15(c) shows an ASTER emissivity image of Death Valley acquired on 

April 7th 2000, compensated for the cavity effect using the transfer-function approach 

described above. The image was sub-setted to show only the Trail Canyon fan.  The 

procedure is implemented automatically, pixel by pixel.  On the basis of elevation 

RMS values, the appropriate transfer function is chosen for each pixel from the set 

defined for alluvial surfaces beforehand using the TIR radiosity model (Figure 12(a)). 

Figure 15(d) demonstrates an example of an emissivity spectrum of a pixel of a 

smooth, low-roughness (RMS = 0.2 m) surface from the Trail Canyon fan.  This 

surface, covered by “desert pavement” of the geological unit QG2 (Hunt and Maybe 

1966), appears dark in Figure 15(a).  The spectrum was sampled from the ASTER 

image after compensation for the cavity effect (Figure 15(b,c)). In the compensation 

procedure the appropriate transfer function estimated with TIR radiosity model 

(Figure 12(a)) was used. The compensation increased spectral contrast 24%, from 

0.17 for the image spectrum to 0.21 for the compensated spectrum. 

Similarly, Figure 15(e) is an example of cavity-effect compensation for a pixel 

representing a rougher surface with RMS = 0.37 m (geological unit QG3: Hunt and 

Maybe 1966).  Spectral contrast was increased 27%, from 0.11 for the image 

spectrum to 0.15 for the compensated spectrum. 

I have not measured emissivity spectra in the field for the area of interest, to 

which I could compare the compensated spectra.  Therefore, I used laboratory spectra 

of granite to approximate the varnished rocks (a mixture of quartzite, schist, and 
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dolomite) of Trail Canyon fan.  The similarity arises because of opaline silica in the 

varnish, and quartz and feldspar in the granite spectrum, and breaks down under high 

spectral resolution.  In Figure 15 (d,e) green dashed line shows laboratory spectra of 

granite with the spectral shape close to that measured by ASTER for QG3 surface.  All 

the thinner dashed black lines show alternative library spectra for granite. 

In conclusion, a protocol for compensating remotely sensed emissivity images 

for the effects of surface roughness is developed. The inputs to the model are TIR 

spectral radiance images (or apparent temperature and emissivity images), a co-

registered image of surface roughness, and transfer functions generated by a TIR 

radiosity model. The transfer functions relate the decrease in εapp compared to ε for a 

given roughness. Further analysis of gamut of natural surfaces DTMs is necessary in 

order to determine  types of surfaces that can be treated together using a single 

roughness calibration and set of transfer functions, as well as the types of surfaces for 

which the compensation approach discussed here is suitable. 

 

5.2 3-D modeling of icy landscape evolution on Callisto 

Erosion is a major landscape-shaping process on the Galilean satellites, along with 

tectonism, cryovolcanism, and impact cratering, of which an understanding is critical 

to their geologic characterizations. The most common positive relief landforms on 

Callisto are knobs, which appear to be remnants of crater rims (Figure 16), central 

peaks, palimpsests and ejecta deposits (Moore et al., 1999, 2004; Basilevsky, 2002).   
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Figure 16.  High resolution Galileo images showing impact craters on Callisto in 

various states of erosion transforming them ultimately into knobs surrounded by a 

largely infilled depressions (Moore et al., 2004). 

 

The loss of a volatile rock-forming matrix or cement mixed with a dark refractory 

fine-grained material is attributed for the degradation of pristine landforms into knobs 

(e.g., Moore et al., 1999, 2004; Greeley et al., 2000; Chuang and Greeley, 2000; 

Basilevsky, 2002). 

In order to test hypotheses related to these landform and albedo patterns, Wood 

et al. (2010) developed a 3-D thermal model. Model simulations of icy satellite 

landform erosion and volatile redistribution are guided and constrained by iteratively 

comparing model results with the general statistics of erosional landform classes 

derived from DTMs produced using Galileo data.  In some cases, DTMs of pristine 

landforms (e.g. fresh craters, fault blocks) are used as the “initial conditions” in model 

runs.  The model includes the following coupled processes: (a) sublimation and re-

condensation of surface volatiles; (b) subsurface heat conduction; (c) direct solar 

heating and radiative cooling; (d) indirect solar and thermal radiation from other 
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surfaces (reflected and emitted); (e) shadowing by topography; (f) subsurface 

sublimation/condensation and vapor diffusion; (g) development of a “sublimation lag” 

of non-volatile material; and (h) disaggregation and downward sloughing of surficial 

material. For items (d) and (e) the radiosity model described in this dissertation was 

used. In order to accommodate both TIR and visible (solar) radiosity and irradiance 

the model was modified according to Lagerros et al. (1997). 

 

5.3 Solar stresses and fractures in exposed rocks 

In their study, McFadden et al. (2005) observed the preferred north-south and near 

vertical orientations of many rock-surface cracks in boulders and cobbles. They 

hypothesized this phenomenon to be fundamentally related to thermal stresses that 

arise daily from non-uniform solar heating. It was proposed that this process, alone or 

together with other processes, plays a key role in the physical weathering of rocks 

exposed to the sun. Once cracks form, they extend, widen, and ultimately may break 

down the entire clast (Figure 17(a)), either through the formation of later generations 

of such cracks or by facilitating salt-weathering or other physical weathering 

mechanisms. 

In order to model this process, it is important to accurately estimate surface and 

internal temperatures of rocks over the course of a day, as well as at a larger time 

scale. The model described in this dissertation proved to be a good tool for 

reproducing shape and magnitude of diurnal temperature curves, as it takes into  
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Figure 17.  a) Clean fracture splitting boulder (~0.5m in diameter) in Cascade 

Mountains (courtesy of Prof. B. Hallet). b) Mean surface temperature calculated by 

the model for a rock, similar in size and shape to the one used for Arkaroola 

experiment. Parameters used in the model were characteristic for the location and 

time of the experiment. c) Results of thermocouple monitoring of rock temperatures in 

one-minute intervals in Arkaroola, Australia in August 2004. Different curves are for 

differently oriented facets on the rock surface (courtesy of Prof. B. Hallet). 
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account effects of changing illumination geometry, thermo-physical properties of the 

surface material, multiple-scattering effects, sensible heat transfer at the surface-air 

boundary, and downwelling sky radiation. Hence, it has been used as a part of a 

modeling effort in order to simulate thermal stresses and fracture propagation due to 

daily heating of a partly buried clast. Figure 17 demonstrates the similarity of diurnal 

curves estimated by the model described here to ones measured with a thermocouple 

in Arkaroola, Australia in August 2004. 

In this chapter possible applications of the TIR radiosity and heat-diffusion 

model were discussed. The main and most obvious application is compensation for 

sub-pixel roughness effects in TIR images. In addition, the model is useful for 3-D 

modeling of the evolution of icy landscapes on the Gallilean and Saturnian satellites 

and kinetic temperature predictions for solar stress and fracture in exposed rocks. 
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CHAPTER 6:  SUMMARY 

 

Temperature/emissivity estimation from remotely measured radiances generally 

assumes that scene elements represented by pixels in fact have a single emissivity 

spectrum and are isothermal. Thus, estimated temperatures and emissivities are the 

effective values that would be found if these simplified assumptions were met. In 

reality, the physical scene is neither homogeneous nor isothermal, and the effective 

values are not strictly representative of it. How much in error are they? The objective 

of this research was developing an effective and comprehensive model in order to 

estimate this.  

Here I have demonstrated that there is significant variation of radiant and 

kinetic temperatures over natural complex surfaces due to the combined effect of the 

reflection of thermal radiation between adjacent scene elements, and both heat-

conduction effects and emitted radiation determined by the kinetic temperature. The 

magnitude of roughness effects for TIR measurements of natural surfaces varies 

significantly during the course of the day. The distribution of radiant temperatures 

depends on the roughness and type of surface. Thus it would be difficult to predict 

this distribution with simple statistical models that do not take into account the 

organization of the surface roughness elements. The apparent emissivity also varies 
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because of the cavity effect: Since reflection and emission are complementary, for 

very rough surfaces the apparent emissivity approaches unity.  

In order to predict kinetic and radiant temperatures distributions over the 

course of a day, I developed a 3-D radiosity model adapted for TIR, and coupled it 

with a 1-D (downward) heat-diffusion model. The model takes into account 

incoming solar radiation (changing sun position), surface geometry, multiple 

scattering effects, thermo-physical and spectral properties of the surface material and 

atmospheric conditions. Performance of the model was verified using an analytical 

solution to the simple case of radiation between single surface element and a large 

finite wall, parallel to the element. I found errors that never exceeded a fraction of 

percent. In validation experiments the discrepancies between modeled and measured 

emissivity spectra were less than 1.5%. In validation of the heat diffusion part of the 

model the average differences between measured and modelled kinetic temperatures 

over the course of a day were less than 1K.  

I also present an example of the radiosity model results for the set of natural 

alluvial surfaces and granite outcrops from the Mojave Desert (CA), as well as some 

lava flow surfaces from Hawaii. These illustrate the need to consider roughness 

effects in order to improve the accuracy of temperature/emissivity separation 

algorithms. The thermal radiosity model appears to be ready to predict spectral 

emissivities and radiant temperatures provided that representative high-resolution 

DTMs are available. This will facilitate comparison of lower-resolution ‘effective’ 
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values recovered in airborne or spaceborne remote sensing to the distribution of 

actual values on the spatially integrated surface. 

Here I concentrated on the case of homogeneous surfaces. However, the 

model can also accommodate non-homogeneous surfaces with facets with different 

spectral signatures in the TIR spectrum. 

In Chapter 5 I discussed possible applications of the developed model, 

including 3-D modeling of icy landscapes evolution on the Gallilean and Saturnian 

satellites and kinetic temperature predictions for solar stress and fracture in exposed 

rocks. However, the straightforward and most important application of the model is 

compensation for sub-pixel roughness effects in TIR images. 

I presented a protocol for compensating remotely sensed emissivity images for 

the effects of surface roughness.  The inputs to the model are TIR spectral radiance 

images (or apparent temperature and emissivity images), a co-registered image of 

surface roughness, and transfer functions generated by a TIR radiosity model.  The 

transfer functions relate the decrease in εapp compared to ε for a given roughness.   

It is necessary currently to calibrate the remotely sensed roughness proxy to 

standard measures of roughness before they can be used in compensation.  

Furthermore, separate calibration is required for slopes >5° and for all view and 

illumination angles.  This current requirement for calibration of the two-look ratio 

images with field measurements is a difficulty in using the approach, but in the future 

this difficulty may be lessened by using pre-calculated transfer functions compiled in 
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a library and selected from DEM slopes and aspects and from image classification for 

surface type. 

In the example shown in Chapter 5, elevation RMS was used as parameterized 

roughness because calibrated data were already available for Trail Canyon (Mushkin 

and Gillespie 2005).  Other parameterizations of unresolved roughness are possible 

(Weeks et al. 1996) and may be used alone or in combination with elevation RMS for 

better description of natural surfaces of different types.  

A focus of future work should be the identification of types of surfaces that can be 

treated together using a single roughness calibration and set of transfer functions, as 

well as the types of surfaces for which the compensation approach discussed here is 

suitable.  For example, I showed that it works effectively for gravels, whereas it may 

not be worthwhile correcting data for forest canopies since the emissivity is high even 

for single leaves, and only gets closer to unity for canopies. Consequently, the 

correction is likely to be small relative to measurement precision. Resolving these and 

related issues requires further analysis of DTMs of natural surfaces in order to find 

more regularities between roughness parameters and cavity effect. 

It seems to be necessary to amass and assimilate more experience with the 

developed TIR radiosity and heat-diffusion model in order to explore possibilities of 

its application further. In spite of this, it can be affirmed that it is a useful tool for 

estimation of sub-pixel distributions of kinetic and radiant temperatures, as well as 

spectral emissivities, over the course of a day. 
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