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University of Washington ” with a generalized, but identifiable error covariance parametrization. Applications

Abstract of these methods to a series of small arrays reveal that much of the misfit to the
plane wave source model is highly coherent over hundreds of kilometers and can
be ascribed to violations of the uniform source field assumption. In particular, we
show that source gradient effects on electric field measurements in 2- and 3-
dimensional situations can be significant. We also briefly consider methods for
- combining a series of small overlapping arrays to synthesize the plane wave
by Gary David Egbert response for a large region.
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In this dissertation we develop new methods for the multiple station analysis
of geomagnetic array data. The methods are based on the observation that the
space of external sources, and hence the space of observable electromagnetic fields
at the earth’s surface (the ‘response space’), can be well approximated by spaces
of very low dimension p. We show that the simplifying assumption of a finite
dimensional external source space allows for a rigorous justification of transfer
function methods, and we demonstrate that the response space is equivalent to all
possible interstation and intercomponent transfer functions. The response space
can be estimated from the p dominant eigenvectors of the spectral density matrix,
the matrix of averaged cross products of Fourier coefficients for all components in

the array. We also develop a simple stochastic model for random sources. This

model, and results from a number of 5 station arrays, show that for arrays which
are small compared to typical source scales that the sources can be approximated
as plane waves (p = 2); a first order correction to this approximation allows for
three source gradient terms (p = 5). We also develop statistical methods for the
estimation of the response space which allow for (potentially correlated) noise in
all measured field components. For the plane wave source case, the covariance
_ structure for the noise (including source effects) can be parametrized in a way
which allows for the separation of coherent source "noise” from the desired signal.
In statistical terms, the model is a (complex) multivariate errors-in-variables model
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Chapter 1

Introduction

Electric currents in the earth’s ionosphere and magnetosphere give rise to
time varying magnetic fields which induce electric currents in the earth. The spa-
tial pattern and frequency dependence of the resulting induced currents depends
both on the temporal and spatial distribution of external sources, and on the spatial
variations of electrical conductivity within the earth. Measurements of the mag-
netic (and electric) fields at the earth’s surface can thus be used to study both the
external sources and the electrical conductivity of the earth. Arrays of magnetom-
eters have been used for both of these purposes (e.g. Schmuker, 1964; Porath and
Gough, 1971; Banister and Gough, 1977, 1978; Kuppér, et al., 1979; Lilley et al.,
1981). The focus in this dissertation is on the latter purpose - we consider some
aspects of the problem of extracting informatidn about the electrical conductivity
within the earth from measurements of time varying electromagnetic fields at the
surface. Because the data is the sum of external and internal components it is, in
fact, impossible to completely ignore the nature of the external sources. Indeed,
much of this thesis is devoted to studying the way in which the external sources
effect the geological interpretation of the data. Nonetheless, our treatment of the
external sources is extremely schematic, and our methods are motivated by a
desire to eliminate, or at least reduce, the complications in the external sources so
that the interpretation of the data in terms of variations in electrical conductivity
of the éanh will be clearer.

As with most physical properties of the earth, the principal variation of
electrical conductivity is radial. The conductivity increases steeply in a depth
range from 400-800 km to values in excess of 1 S m™! (Banks, 1969; Schultz and

Larsen, 1987). This high mid-mantel conductivity limits the diffusion of




2

externally induced electromagnetic fields to the crust and upper mantle. Deeper
penetrations are possible with longer period variations, but periods of a few weeks
or more are required to penetrate to mid-mantle depths. As a result, information

about electrical conductivity obtained from most geomagnetic array studies is Lim-

ited to the crust and upper mantle.

There are also substantial lateral variations of conductivity, and these are usu-
ally the focus of geomagnetic array studies. Such lateral conductivity contrasts are
particularly pronounced in the crust, where several orders of magnitude of varia-
tion in electrical conductivity are not uncommon. The most significant surface
conductivity contrast occurs at the coast where the highly conductive oceans abut
the relatively resistive crust (Parkinson, 1962; Schmuker, 1964; Lilley and Ben-
nett, 1972). In addition significant variations in crustal conductivity occur.
Numerous major crustal conductivity ‘anomalies’ have been mapped by geomag-
netic induction methods (e.g. Vozoff and Swift, 1968; Camfield et al., 1971;
Porath and Dziewonski, 1971; Babour and Mosnier, 1979; Law et al., 1980; Banks
and Beamish, 1985). Some of these crustal anomalies have been related to geoth-
ermal activity (Ingham, et al., 1983). Others have been interpreted as suture zones
~or old plate boundaries (e.g. Camfield and Gough, 1977; Stanely et al., 1987);
electromagnetic induction methods may thus be useful for studying the tecfonic

history of a region.

Induction methods are also useful in the study of ongoing tectonic processes.
Significant conductivity anomalies in the lower crust and/or upper mantle have
also been mapped in continental rift zones (e.g. Schmuker, 1964, 1970; Porath and
Gough, 1971; Banks and Ottey, 1974; Hermance, 1982). In a similar extensional
setting, variations in the depth to é layer of high conductivity in the uppermost

mantle (Porath et al., 1970) beneath the basin and range have been correlated with

seismic parameters and heat flow (Gough, 1974). In an application to a different

sort of tectonic problem Helferty et al. (1987) have used geomagnetic induction
methods to locate the edge of the subducting Gorda plate in Northern California.
At greater depths, Schultz and Larsen (1987) have inferred variations in mid-
mantle conductivity from their analysis of very long period magnetic observatory
data. Such long period global studies may ultimately provide significant new con-
straints on the physical properties of the upper mantle. This extremely brief
review is meant only to give the reader some idea of the sort of variations in con-
ductivity that have been detected with geomagnetic induction methods, and to
indicate in a very general way the relevance of these observations to geological
and geophysical problems. More thorough reviews are given, for example, by

Gough (1974, 1983), and Hermance (1982, 1983).

This dissertation is about the analysis of data from geomagnetic arrays. By a

geomagnetic array we mean a set of simultaneously operating instruments which
measure the magnetic and/or electric fields at n sites. The geomagnetic arrays
referred to above are quite variable in size - both in spatial extent and in the
number of instruments involved. At the largest spatial scales we have the globally

distributed geomagnetic observatories; at the smallest we may have a maximum

“station separation on the order of kilometers or less (a single instrument, or an

instrument with a nearby remote reference, may be usefully considered as an array
for that matter, so the smallest spatial scale is essentially zero). The largest
regional arrays cover several thousand kilometers (Camfield er al., 1970; Porath
and Gough, 1971; The EMSLAB Group, 1987). Most of the results referred to
above are from regional arrays of an intermediate size - arrays whose size is on

the order of hundreds of kilometers. Alabi (1983) reviews many of the more

significant regional arrays.

The number of stations in an array is also quite variable. The smallest arrays

may consist only of a few instruments (e.g. Schmuker, 1964; 1970; Law er al.,
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1980; Banks and Beamish; 1985), while the more or less continually operatin.g
global observatory array consists of several hundred (independently operated, vari-
able quality) stations. For regional arrays, the largest array to date (as. far as
number of instruments) is the EMSLAB array (Booker et al., 1987.). Tl?1s array
included stations on land and on the seafloor and consisted of 76 s1fes with m'ag—
netic field measurements only and an additional 27 magnetotellur.xc (MT) sites
with both magnetic and electric field measurements. We will consider data jfrom
five of the land based MT stations in this dissertation. PI'CViOl.IS large reglonaucl1
arrays have included as many as 46 (magne‘tic fields only) stations (Porath an
Gough, 1971). |
In fact all of the arrays that we consider in this dissertation consist of 5 or
fewer stations. These arrays are also all of relatively small spatia.l extent - array
sizes are on the order of 50 - 200 kilometers. While many details of our array
analysis techniques have been strongly effected by the size of t%le arrays th-at we
have worked with, we believe that many of ﬂxe techniques described here w.111 be,
with suitable modification, relevant to geomagnetic arrays in general. In particular,
the methods described in this dissertation not depend in any way on the number of
stations being small (although the way we have numerically implemented the pro-
cedures may be usefully improved for larger arrays). For arrays of .muc.h g.reétci
spatial extent the methods developed in this dissertations will rcqu.lre sxgmﬁca::1
modifications. Nonetheless, we believe that the general perspectlve. develop
here will be quite relevant to the case of spatially larger arrays, including thé glo-
bal array of geomagnetic observatories. For these reasons we have kept much of
our discussion as general as possible.
Due to the relatively limited number of instruments, all geomagnetic arrays
are either of limited spatial extent and/or are sparse. For large arrays (i.e. the glo-

bal observatory array (Chapman and Bartels, 1940; Berdichevsky and Zhdanov,

e
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1984), or the very largest regional arrays (Porath, er al.,1970; Richmond and
Baumjohann, 1983)) a separation of the variations into internal and external parts
is possible, at least in theory. For arrays which are smaller, either in number or in
spatial extent, such a separation is not feasible. In fact, Gough (1973), based on
his experience with several large regional arrays in North America, has questioned
the value of a formal separation of the fields in any regional arrays. Even for the
largest such arrays the spatial scales of the external sources are much larger than
the array and the internal/external separation is problematic (Gough, 1973; Berdi-
chevsky and Zhdanov, 1984). In general, then, the quantitative interpretation of
array data requires some simplifying assumptions about the spatial structure of the
external sources. This is particularly true for the very small (5 station) arrays

which we analyze here.

In regional array studies, where array dimensions are smaller than typical
source scales, it is usually assumed that the external source fields can be approxi- -
mated by plane waves of infinite horizontal extent. If this assumption holds

exactly and measurements are made without error, it is easy to show that all field
components can be related by frequency domain linear transfer functions to the
two horizontal components of the magnetic fields at any chosen reference station.
These transfer functions indirectly define the response of the earth to plane wave
sources and can be used to make inferences about conductivity in the earth. The
transfer function approach was originally developed for the case of VEry sparse
arrays, where measurements are made simultaneously at only a few stations, often
only one (e.g. Schmuker, 1964). The transfer function method has, however,
become a standard tool in the quantitative interpretation of much larger (i.e.
denser) arrays (e.g. Beamish, 1977; Alabi 1983; Gough and Ingham, 1983; Ingham
et al., 1983). The methods of data analysis developed in this thesis are essentially

a generalization of the standard transfer function methods. We will show that our




approach is more reasonable both physically and statistically.

The usual interstation and intercomponent transfer functions have typically
been estimated, one at a time, from the Fourier transformed time series using least
squares methods. To do this, it is assumed that the reference fields are measured
without error, and that the discrepancy between predictions and observations due
to the failure of source field assumptions can be treated as incoherent noise in the
predicted field component. Clearly, neither assumption is reasonable. There will,

in general be noise in all field measurements. As is well known (e.g. Jenkins and

Watts, 1968), noise in the input channels causes biases in the transfer function

estimates. This problem has received considerable attention in the context of mag-
netotelluric impedance estimation (Gamble et al., 1979; Clarke et al., 1983; Peder-
sen and Svennekjaer, 1984) where the seriousness of this problem has led to the
development of the remote reference technique. The treatment of the effect of
violations of source assumptions as incoherent noise is potentially even more
dangerous. Since the failure of these simplifying assumptiqns can result in
coherent and systematic errors, an uncritical application of standard statistical

methods can lead to extremely misleading results.

The data processing methods developed in this dissertation allow us to con-
front both of these problems in a much more natural fashion. Our approach,
which is based on a statistical analysis of the eigenvalues and eigenvectors of the
spectral density matrix (SDM), is a true multivariate statistical technique which
allows for (potentially correlated) noise in all measured field components. In addi-
tion to providing a more physically reasonable statistical model for transfer func-
tion estimation, our approach has also proved extremely useful as a tool for
exploring the ways in which vioiations of the simplifying plane wave source
assumption effect the data. These results about source effects while interesting in

their own right, will allow us to formulate a more physically reasonable statistical
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model for the structure of the ‘noise’ (including source effects). This more rea-

sonable model in turn, can be used to improve estimates of transfer functions,

In Chapters 2-4 we develop these ideas in detail. We illustrate the ideas with
results obtained from a series of small five station arrays. Many details of our
methods are geared to this specific situation, but wherever possible we have kept

the treatment fairly general, and hence slightly abstract.

Chapter two develops the physical background and the basic idea behind our
approach to geomagnetic array analysis. This chapter provides a rigorous connec-
tion between the physical situation and the statistical model that we will use. In
the actual application we have in mind, the external magnetic source fields can be
approximated as plane waves of infinite horizontal extent. We treat this as a spe-
cial case of the general situation where the source fields are assumed to lie in a
finite dimensional space, and we show how this assumption forms the basis for a
generalized transfer function approach. No significant discussion of the statistical
model is given in Chapter 2; rather we seek to heuristically justify the use of the
dominant eigenvectors (i.e. principal components) of the SDM as estimates of the
response of the earth to simple (e.g. plane wave) external source fields. The

.chapter closes with some examples of some cxploi'atory data analysis for a number
of small arrays. In addition to demonstrating the use of the eigenvectors of the
SDM as estimators of the plane wave response of the earth we explore the struc-
ture of the ‘noise’ in the data. We find that, in fact, much of the ‘noise’ is highly

coherent across the array and can be ascribed to violations of the uniform source

field assumption.

Chapter 3 develops a stochastic model for random external sources. This
model is then used to study the properties of the the eigenvalues and eigenvectors
of the SDM’s for several synthetic arrays. In this chapter we make the connection

between our approach and a sort of discrete spatial spectral analysis of the fields.




The results of this chapter provide a strong justification for the approach

developed heuristically in Chapter 2.

In Chapter 4 we develop the statistical model. In statistical terms, the model
is a (complex) multivariate errors-in-variables model with a generalized, but
identifiable error covariance parametrization. Adapting results from the statistical
literature in factor analysis and errors-in-variables regression, we develop asymp-
totic estimation errors and goodness of fit statistics for our model parameters. In
addition, using results from Chapters 2 and 3, we develop a physically based
parametrization for the error covariance structure which allows for violations o‘f
the plane wave source assumption. We demonstrate that, provided the signal to
noise ratio is large enough, it is possible to uniquely separate the signal and noise
components in this model. The model for the noise covariance matrix is linear;
we have developed an itera;;ive generalized least squares scheme for estimation of
the parameters of this model. We discuss our approach and relate this to a similar
estimation scheme proposed (for the case of real covariance matrices with linear

structure) by Anderson (1969, 1970, 1973).

We apply the statistical techniques developed in Chapter 4 to four five station

arrays - three 3 component (magnetic fields only) arrays and the 5 component

magnetotelluric array form the EMSLAB experiment. One significant result of
this analysis is that a substantial fraction of the misfit between local electric and
magnetic fields in the EMSLAB array can be ascribed to source effects. In partic-
ular we find that there are electric fields, coherent across the array, which are
coherent with gradients in the horizontal fields and with source vertical ﬁelds,
which are not coherent with the local horizontal magnetic fields. This shows that
in 2- and 3-dimensional environments finite wavenumber sources can have a first
order effect on impedances. This effect is not predicted by an analysis of the sim-

ple one dimensional case, and indicates that the analysis of source effects given by

o
.
-
o
;ﬁe
-
.
=
.
=
-
o
-
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Dmitriev and Berdichevsky (1979) is overly optimistic. We also show that in

some circumstances there are small current flows in conductive anomalies which
are not coherent with the local magnetic fields (but which are coherent with local
gradients). Although this effect is small it demonstrates that the extreme form of

current channeling suggested by Babour and Mosnier (1979) does occur, at least to

a small extent.

Finally in a very brief Chapter 5 we outliné some extensions and areas for
future work. In particular, we give a very brief indication of how our estimation
scheme can be generalized to optimally combine a number of small overlapping
arrays to produce a large synthetic array. We illustrate this technique by syn-
thesizing a 40 station array from a series of 3 - 5 station GDS arrays run in

southwestern Washington over the past seven years.




Chapter 2
The Response Space Approach to Geomagnetic Array Analysis

The goal of this chapter is to establish a firm theoretical foundation for the
array analysis schemes which will be developed in this thesis. The methods
described here are closely related to transfer function (TF) methods which have
been frequently applied to the analysis of data from geomagnetic arrays both large
and small (e.g. Schmuker, 1970; Frazer, 1974: Beamish, 1977; Alabi, 1982; Ing-
ham ez al. , 1983; Gough and Ingham, 1983). We will thus begin with a fairly
abstractA and general treatment of the TF approach in geomagnetic induction stu-
dies. We will show that the TF method can be justified with complete rigor pro-
vided that the set of all external current sources used in an analysis are restricted
to a fixed finite dimensional space. This development leads quite naturally to the
general concept of the 'response space’, which effectively defines the response of
the earth to all possible source configurations in this restricted finite dimensional
space. This response space will be seen to be equivalent to, but in many ways
more fundamental than, the usual intercomponent and interstation transfer func-

tions.

The response space formulation will be used throughout this thesis. This for-
mulation unifies and simplifies the various transfer functions which have been
used in the interpretation of geomagnetic induction data. More importantly, form
the standpoint of this thesis, this formulation leads to new methods of TF estima-’
tion. These estimates are based on the eigenvalues and eigenvectors of the full
spectral density matrix (SDM) (i.e. the matrix of the auto and cross spectral
powers of all channels at all stations in the array). In contrast to the standard
multiple input single output model used in the classical TF estimation approach

(Jenkins and Watts, 1968), the statistical model which forms the basis for our
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estimation scheme allows for noise in all channels. This is certainly more realistic
than the standard TF model which assumes that there is noise only in the
predicted, or output, channel. Furthermore, our model for noise can be general-
ized to allow for noise which is correlated between channels (which we shall see
is commonly the case with geomagnetic induction data). We formulate this statist-
ical model in this chapter; the estimation of the model parameters and computation

of error estimates are discussed more fully in Chapter 4.

We will finish this chapter by examining the eigenvalues and eigenvectors
(i.e. the principal components) of the spectral density matrices computed from
several five station 3-component magnetovariational (MV) arrays from
southwestern Washington, and a five staton, S-component magnetotelluric (MT)
array from the EMSLAB long period MT profile (The EMSLAB Group, 1987).
We will show that the data from these small arrays is largely consistent with the

plane wave source assumption which justifies the standard TF approach. Using

this data, we will demonstrate the computation of the appropriate plane wave
response space. In addition, we shall demonstrate hoW a more careful study of the
eigenvectors and eigenvalues of the SDM can reveal information about the struc-
ture of the noise. We will see that at periods greater than a few hundred seconds
the noise is mostly coherent across the array and can be attributed to the violﬁtion

of the simplifying plane wave source assumption.

Before proceeding some general comments on the time series aspects of this
problem are in order. The raw data which is collected in a geomagnetic array
consists of a number of simultaneously observed time series which are (analogue)
low pass filtered and sampled at imerva.l AT. Although natural source geomag-
netic data has been interpreted with time domain techniques (Babour and Mosnier,
1979; McMechan and Barrodale, 1985) it is more common to use frequency

domain techniques (see Beamish (1983) for a comparison; Jones (1983) for a
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critique of some shortcomings of time domain methods). Our approach i

latter sort. While the transformation between the raw time seriis a(r:ld lthf -
quency domain Fourier coefficients requires some care (cf. Thomson er al j9f7r:
:hornson, 1'982), we will not discuss these aspects of the data analysis p.roblem,
.ere. .The time series processing we have used is essentially the same as that out-
lined in Eg.bert and Booker (1986). In very brief outline, we take ve lou
(N = 10°) time series for each channel, pre-whiten and window the tim:y serix:j

with a series of relatively short overlapping pi-prolate spheroidal windows (Tho

son 1982), and Fourier transform the resulting data segments. Longer time 'm-
dows are used for lower frequencies, and we use a cascade decimatio e
scheme to keep the number of points which must be transformed small Thn -
cedunj, results in a series of Fourier coefficients for each frequency. In thislsthzrc"-
we will, for the most part, treat this sequence of Fourier coefficients as if thselj

were the raw data "
_. . When we refer to "the data”, this is what we will mean, unle
we explicitly state otherwise. | i

2.1: Physical Background

p

V x B =poE +J,,

(2.1.1a)
VB =
0 (2.1.1b)
V x E = -ioB 2.1.1¢c)
VE =
9’ 2.1.1d)
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where B and E represent the magnetic and electric fields respectively, p is the
magnetic permeability and € the dielectric constant, ¢ is the electric charge density
and J,, represents external (non-induced) current sources. Note that with the
quasi-static approximation we have omitted displacement currents (Maxwell’s con-
tribution to the equations which have come to bear his name); this approximation
can be justified by standard scaling arguments (c.f. Rokityansky, 1982) for the fre-
quencies, length scales and conductivities encountered in geomagnetic induction
studies.

Here we will treat the surface of the earth as a plane of infinite horizontal
extent. The region z < 0 repfesents the exterior of the earth and the region z > 0
the interior. The basic results described can be generalized to other geometries
(such as a spherical geometry) when appropriate. ' In the interior region we assume
that J,, = 0. This means that currents in the interior of the earth are induced
ohmic (J = oE) currents only. In particular, this formulation does not allow for
fields produced in the earths core due to the hydromagnetic dynamo. For the fre-
quency ranges we are interested in (up to a few hours) these internal fields are
negligible due to the shielding effect of the (relatively) highly conducting lower
mantle (e.g. Merrill and McElhinny, 1983). We also assume that in the exterior
region the conductivity is zero. Again, this approximation is well justified for the

frequencies and earth conductivities of interest to us (Rokityansky, 1982).

The physical picture here is that the currents J,.; in the ionosphere and mag-

netosphere (the exterior region) are sources which induce electromagnetic fields

inside the earth (the interior region). In the absence of such external currenis the

fields are zero everywhere. This can be made precise via standard existence and

uniqueness results for Maxwell’s equations (c.f. Berdichevsky and Zhdanov, -

1984). Specifically, for J,; restricted to a bounded region and with the magnetic

fields satisfying the boundary condition B — 0 as Ixl — oo there is a unique
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solution B, E to the system of equations (2.1.1a-d). The uniqueness of the solu-
tion implies that the fields seen at the surface of the earth (z=0) are determined
by the configuration of external currents. In fact we can make a somewhat
stronger statement: The solution in the interior and on the surface is determined

uniquely by the fields at the surface which are due to external sources

With 6 =0 in the exterior region ( z<0 ) we have V x B = 0. Together

with (2.1.1b) this implies that B can be written as the gradient of a magneto-static

scalar potential
B = V¢ where V29 =0

Using standard results (e.g. Schmuker, 1970; Berdichevsky and Zhdanov 1984)

we can write the potential ¢ as the sum of internal and external potentials

¢=¢i+¢e

where

0; > 0 as z - —oo
0, > 0 as z - +o

Note that the magnetic fields can be obtained from these potential functions only
in free space in a region near the surface z = 0 ( e.g. for z satisfying 0 > z > —z)

where we have both 6 =0 and J,, = 0.

We will now show that the internal potential ¢; is determined uniquely (up to
a constant, of course) by the external potential ¢,. This is quite obvious from a
physical standpoint - with our assumption that the currents in the earths interior
are all induced by the time varying magnetic fields it is clear that the internal
fields must be caused by the external fields. Furthermore, it is intuitively obvious
that the exact distribution of currents is not important. The internal fields will

depend only on the pattern of external fields impinging on the surface of the earth.
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tials (defined for 0 > z > —z5). We wish to show that if

(2.1.2)
¢e1 = ¢22 ,
" (2.1.3)
)
Suppose, then, that (2.1.2) holds and let
JA =] 1~ Jz
dia = 0i1 — 02

q)eA = q)el - ¢e2 =0

Ille hllEaIlt) Df Equauolls (2'1‘1a d‘) lmphes tlla't fCI E :tE I A C ']A
lA EA

it urce J,. In the
be the magnetic fields for the solution to (2.1.1) with current so A

region 0 > z > zp we may write

2.14)

By = Voa = Voir

- (2.1.5)
o —0 as z—> — oo

Define

B >0 (2.1.6)

B= V¢A z<0

d) for z > 0; by (2.1.4) this holds for

By definition B’ satisfies equations (2.1.1a- e
on z > —zy. In the exterior region, z < 0, the gradie

the larger regi
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potential (and hence B’) satisfies the system (2.1.1) with Joxr = 0. Finally, note
that by (2.1.5) B’ satisfies the boundary conditions B’ — 0 as Izl 5 oo, Hence, B’
is a solution to the system (2.1.1) with Jew =0. Since B =0 satisfies (2.1.1) with
no external currents, we conclude from the uniqueness properties of solutions to

(2.1.1) that
B'=0
Hence we see that
01 = dp
(modulo an additive constant) and we are done,

With this result we may write the internal Potential as a function of the exter-

nal potential;

¢i = Lo,w(¢e)

where the operator L, depends on the frequency ® and the conductivity distribu-
tion 6. From the linearity of Maxwell’s equations it is clear that this operator is
iinear.

As an explicit example, we consider the simple and well understood 1-
dimensional (1-d) case where conductivity varies only with depth o(x,y,z) = d(z).
For the 1-d case the operator Ls, can be most casily expressed in the spatial
wave number domain. In general we may write ¢; and ¢, as Fourier integrals
(Schmuker, 1970):

0e(x,2) = # [ v 8u(v) explicv - x)-v2]
0062) = 2 [P ) explitv - x)-vi]

where v = lvl = v2 4+ vf. The operator L, can be written in the wavenumber

domain as
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V) = [[ & Ly o(V.V) 9V (2.1.7)

In the 1-d case the kernel of the operator in (2.1.7) has the simple diagonal form
Lso(v,v') = 3(v = V)B(@,v) (2.1.8)

where B(m,v) can be written in terms of the wavenumber dependent impedance
{(m,v) (Rokityansky, 1982):

o - ivC(w,v)

o + iv{(®,v) 2.1.9)

B(w,v) =

In the 1-d case then, we see that Ly, is equivalent to the most general 1-d
response function, the wavenumber dependent impedance. More generally, it can
be seen that all information about electrical conductivity ¢ which can be obtained
from measurements on the earth’s surface is contained in the operators Ly, as ®
varies.

The relationship between the data (observations of time varying magnetic and
electric fields on-the earths surface) and the conductivity in the interior of the

earth ¢ can be expressed abstractly by the mappings:
6 - Lsgy — .daua

The quantitative interpretation of geomagnetic data requires inverting the above
mappings from a finite number of observations. This task can be broken into the

same two steps.
data —» Lg, — O

The work described in this thesis is concerned with the first step of the data
interpretation process. Specifically we study ways to best use measurements
obtained from small arrays of simultaneously operating instruments to obtain

information about the response of the earth, represented completely, and somewhat

abstractly here by the operator L .
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2.2: A Rigorous Justification of Transfer Functions

The formulation of the geomagnetic data interpretation problem given above
is completely general and will be useful to us in the sequel.. However, this gen-
eral formulation is not, by itself, particularly practical. L, defines the response
of the earth to all possible external source potentials, and is thus an operator
defined on an infinite dimensional function space. The computation of L 4, would
thus require in general the numerical solution of the system of equations (2.1.1)
for a large number of possible source configurations (literally an infinite number).
As a result Ly, cannot be Vpractically computed except in the simple 1-d case
where analytic solutions are possible (i.e (2.1.7 - 2.1.9)). At the same time, the
direct estimation of L, from the sort of data which are typically available is not
practical. Measurements are made simultaneously at a relatively small number of
stations which are sparse and/or of limited spatial extent. In order to interpret

natural source geomagnetic data some simplifying assumptions are thus required.

The approach to this problem which has proved most useful is to assume a
specific form for the external source fields and then try to choose data which is
reasonably consistent with the assumed source morphology. In the best known
example of this approach one assumes that the sources consist of vertically pro-
pagating plane waves of infinite horizontal extent. The plane wave source
assumption is central to most quantitative data interpretation in local and regional
geomagnetic induction studies. As is well known, and as we shall discuss in more
detail below, the plane wave source assumption implies the existence of intercom-
ponent and interstation transfer functions. Specifically, the classical magnetétellu—
ric model first proposed by Tikhonov (1950) and Caignard (1953), the single sta-
tion vertical field transfer function approach used in magnetovariational (MV) stu- -
dies (Schmuker, 1964; 1970; Everett and Hyndman, 1967; Gregori and Lanzerotti,

1980) and the interstation transfer function method used for the computation of
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anomalous horizontal fields from magnetometer array data (Schmuker, 1970;

Beamish, 1977; Beamish and Banks (1983)) all make this simplifying assumption

about the external sources.

Another example of a simplifying source assumption can be found in the
work of Schultz and Larson (1983, 1987). In this global scale study of long
period (T 2 several days) geomagnetic variations it was assumed that external
source potentials were all proportional to the P9 spherical harmonic. Again, this
~ assumption implies the existence of a transfer function, which in this case gives a
linear relation between the north-south and vertical magnetic field components.
More generally numerous global conductivity”studies (see Rokityansky (1982) for
a general review), have assumed that the external source potentials are linear com-

binations of a few of the lowest order spheriéal harmonics.

More specific source assumptions have been proposed for specific types of
geomagnetic disturbances whose source current systems are reasonably well under-
stood. For instance, Schmuker (1970) suggested that magnetic bay type distur-
bances should be analyzed separately with consideration given to the general spa-
tial structure of bays. Another example is provided by the analysis of solar quiet
day (Sq) records (e.g. Price and Wilkins, 1962) where the detailed geometry of the
fields can be used for interpretation of the data (Campbell, 1986).

Finally, the magnetic spatial gradient technique (Schmuker, 1970; Kuckes,
1973; Lilley et al., 1976; Jones, 1980) in which the statistical relationship between
the vertical fields and the gradients of the horizontal fields is used to compute an
equivalent 1-d magnetotelluric impedance makes the simplifying assumption that
the fields can be represented as uniform plane wave sources plus uniform gra-
dients of the horizontal field components. Kuckes et al., (1985) have discussed
this aspect of the spatial gradient method fairly explicitly, and they have shown

that the vertical fields will in general be linearly related to two terms representing
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the two polarizations of the plane wave sources plus three terms representing the
gradients in the horizontal fields. We will return to this point in some detail in
Chapter 3.

All of the simplifying source assumptions discussed above are special cases
of the general model which will be central to this thesis. In all of these examples
the possible external fields are restricted to a finite (and usually very low) dimen-
sional subspace of the space of all possible source potentials. As we shall now
show, it is this assumption which allows for the rigorous justification of the

transfer function approach.

We assume then, that the space of possible source potentials @ is of finite
dimension p:
D = {¢e:¢e=ﬁlaj¢j}= Sp{¢j:j=l,p} 2.2.1)
].':
where Sp { - } denotes the span (i.e. the linear space consisting of all linear com-

binations) of the vectors in brackets. In the case where we assume that sources

are plane waves the space of external potentials @ is of dimension p=2
o =Sp {(bl, o, } where O1=x =y (2.2.2)

The potentials in the space @ correspond to all possible polarizations of uniform
vertically propagating plane wave sources. | For the other examples discussed
above the space @ has dimension ranging from p =1 (e.g. for the case where
source potentials were assumed proportional to the PY spherical harmonic) to
p =5 (for the generalized spatial gradient model described by Kuckes et al.,
1985).

The assumption that the external sources lie in a fixed finite dimensional

space implies a set of linear relations between measured field components. A
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variant on this idea has been developed in great detail in the Russian literature.
Berdichevsky and Zhdanov (1984) and Svetov and Shimelevich (1982) give an
abstract treatment of this idea and discuss a number of specific examples. Svetov
(1986) summarizes ihe principle points. The Russian approach assumes that the
external currents J,, lie in a finite dimensional space; our approach is slightly
different in that we make the weaker assumption that the external source potentials

lie in a finite dimensional space, but the basic idea is the same.

Suppose then that (2.2.1) holds. Then any observable magnetic field at the
surface z = 0 is the gradient of the scalar potential ¢ = ¢, + ¢; where
0.= 3 o,
=

Then we may write

B = V[0, +Loa0) | =

§ ov[0+ Lot ] = il oB; @23
F

J=1

Thus we see that the observable magnetic fields lie in the space of finite dimen-
sion p spanned by the p basis functions B; = V[q)j + L(,,a,(¢,-)] which give the

total magnetic fields (internal plus external) resulting from the external source
polarizations ¢; , j = 1, p. The electric fields can be added without changing this
situation. Proceeding as in Dmitriev and Berdichevsky (1979) (see also the dis-
cussion in Chapter 3) it can be shown that a linear operator Lg (which also
depends on ¢ and ©) relates the electric fields to the horizontal magnetic fields By,

on the surface z = 0. Thus:

Fl 1

E = L(By) = LE[ $ ajB,,j] -$ LBy =SoE® (24
. Z
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where E; gives the electric fields associated with ¢;.

Together (2.2.3) and (2.2.4) imply that all observable 5 component elec-
tromagnetic fields are linear combinations of p basis functions:
F(x) = ﬁ o F(x) (2.2.5)
1

where
B:
ro=(29)  rew=[M3] -

Suppose now that we measure these five components simultaneously at n sta-
tions, whose locations are given by Xx; i =1, n. After windowing and Fourier
transforming the measured time series we obtain the fundamental frequency
domain complex data vectors of dimension 5n. For now we assume that these
measurements are noise free. For a fixed frequency w we will denote this vector
by b, and use the similar notation u; for the 5n dimensional complex vector giving
the fields associated with the /* external potential basis function ¢; at the station

locations x;. Explicitly,

(Fxy) | [Fep)]

F(xy) Fi(xp)
b= ‘ u]' = :

|F(x | | Ffxo)

By (2.2.5) b is a linear combination of the p basis functions u;

p
b= Sou (2.2.6)
A

Put another way, b lies in the p dimensional subspace of C* spanned by the vec-

tors llj B
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b € R=Sp{uj:j=1,p}

i.e. any observable frequency domain data vector b is a linear combination of the
p basis functions u;. In general all of the five components will not be measured at
some (or all) stations. Assuming that a total of m < 5n channels of data arc4
recorded, the definitions and dimensions of b and u; and R are modified in the
obvious way. We will refer to the space R, a p dimensional subspace of C™, as
the response space. This space contains all possible observable fields, and as we
shall see knowledge of this space is equivalent to knowledge of all possible inter-
component and interstation transfer functions. In this sense this space defines the

response of the earth to the assumed space of possible external sources.

In general, with the vector b restricted to the p dimensional subspace R we
would expect that fixing the values of p components of b would linearly determine
the remaining m — p. To be specific, suppose the first p components of b are
fixed (more generally, rearrange the order of the components so this is true). Let
U be the matrix whose j# column is the basis vector u; and partition the vector b

and the matrix U in the obvious way:

L |y pxp
b= [bz] Y= [Uz] m-pxp

If the matrix U, is non-singular and if b € R, it is easy to check that
b, = U,U7'b; = Th;_ (2.2.7)
Thus provided U; is non-singular the m — p components of b, may be lihearly

related to the p components of b; by the matrix of transfer function coefficients

T = U,U7l. It is this fact which forms the basis for the transfer function method.

There are several well known examples of transfer functions in electromag-

netic induction which we may site as specific cases of this general formulation.
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The best known is the standard magnetotelluric impedance tensor { computed
from magnetic and electric fields at a single site. In this case, as noted above, one
assumes that, the external sources are plane waves of infinite horizontal extent so
that p = 2. We take basis vectors u; and u, which correspond to two orthogonal

source polarizations

>

=
I
k3
-~
]
[

M

[ 8]

i

\el” Nn’

i

and form the single station impedance

-1
£ = E,y Ex| |Bu Bxn
Ey Ey| 1By By

‘Other examples, such as the vertical field transfer function or the interstation

anomalous horizontal field transfer function, arise in a similar fashion.

There are several remarks that are in order at this point. First, the matrix U,
defined above will not always be non-singular for all possible choices of p com-
ponents as the fixed or independent variables. A very simple example of this is
contained in the single component transfer function used by Schultz and Larson
(1987). Herep =1 andiim = 3 - three components of the magnetic field areb meas-
ured at a single station. With the P‘l’ assumption the (geomagnetic) east-west com-
ponent of the magnetic field isszero. If this component of the field were chosen as
the independent variable then we would have U; = 0. In this particular case only
a transfer function between the north-south and vertical field components is possi-
ble. It is easy to construct slightly more complex examples from the MT
impedance tensor case. Here with p =2 and m =4 we would normally choose

two components of the magnetic fields or two components of the electric field as

independent variables and treat the two components of the other field type as the

&
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dependent variable. If we used one electric (say E,) and one magnetic (say B,)
field component as the independent variables we would not be assured that U,
would be non-singular.

Second, we have referred to the coefficients T of the linear relationship-
between the vectors u, and u, as transfer functions. This use of the term is rather
careless in some ways. Our discussion here has focused on the fields observed for
a fixed frequency @ and has ignored the time domain aspects of this problem. A
transfer function, however, has both frequency and time domain representations.
The time domain representation of the transfer function, the impulse response
function, is just the inverse Fourier transform ‘of the frequency domain representa-

tion that we consider here |
T() = [ do ™ T(@)
Two functions i(f), il,(f) which are linearly related in the frequency domain by
the transfer function u,(®) = T(w)u,(w) are related in the time domain via the con-
volution #,(t) = T * iy (2). |
In the usual situation, i;(?) is the input variable, @() is the output variable,

and the transfer function T() is causal (T(®)=0 for t<0) and stable
( j IT()2dt < o). These are properties that we expect from a physically realizable

system - there can be no output before the input and if the input has finite power
the output must also. In our situation it is not proper to consider the vectors u;
and u, of (2.2.6) as, respectively, input and output variables. The decision as to
which components are to be treated as input and which as output is totally arbi-
trary. If we consider the time domain relationship bctween the internal and exter-
nal potentials, simple physical arguments suggest that we may consider ¢; 9,
respectively, as the output and input variables. The total fields observed at

different points, however, should more properly be thought of as joint outputs
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which may be causally and stably related to the input ¢,. In fact, Svetov (1986)
claims that causality of the transfer functions of (2.2.6) can be established under
very general circumstances, but that these transfer functions need not be stable.
(No proof or reference is given for the first statement, although in very specialized
cases causality can be easily established (e.g. Jones, 1980); the second statment is
fairly obvious). At any rate, one must be careful here; the simple physical input-
output model of the transfer function is not exactly valid for geomagnetic transfer
functions for the simple reason that the measured quantities always contain a mix-

ture of the external and internal fields (i.e. the inputs and outputs).

Note also that for T to be a transfer function, the response space R must not
depend on frequency. For R torbe independent of frequency the spatial and tem-
poral dependence of the sources must be separable (i.e. ¢.(X,r) =f(x)g(®). In
general, current systems which move relative to the earth (e.g. Sq) won’t satisfy
this constraint (Mareschal, 1986), so this is a fairly restrictive assumption. The
existence of the frequency domain linear relationships of (2.2.6) for any fixed fre-
quency ®, however, does not depend on T being causal, stable or, for that matter
even a transfer function. In this thesis we study such frequency domain linear
relationships even if they do not really constitute transfer functions. We will,
however, generally call these relationships transfer functions,‘ even though in some

cases this will be an abuse of terminology.

2.3: The Response Space Formulation

Model Parameterization

In the previous section we demonstrated that the transfer function approach
could be justified rigorously if the external source potentials could be restricted to
a subspace of small finite dimension. In this section we will demonstrate that

there is a slightly different way to use this simplifying assumption about the
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sources which is more natural and more satisfying from both the physical and sta-
tistical perspectives. This approach is particularly useful for the analysis of data
from small, regional geomagnetic arrays, and it is this application that we have in

mind. Initially however, we will keep the discussion fairly general. .

The transfer function approach described above is rather awkward in two dis-

tinct ways. First, as discussed above, it is not really physically correct to treat

some channels as independent inputs and and others as dependent outputs. This
introduces an asymmetry between the different field components which has no
physical basis. In some cases, such as in the estimation of the MT impedance ten-
sor from single station data, this asymmetry may seem fairly natural. Even here,
where there is a fairly clear distinction between the magnetic fields and the elec-
tric fields, there is no physical basis for choosing one set of fields as inputs and
the other as outputs (although there may be good statistical reasons for making
such a choice for the estimation problem). In other cases, such as in the estima-
tion of interstation horizontal field transfer functions, the asymmetry is even more
unnatural. Here, one resorts to notions such as a "normal" reference station (e.g.
Schmuker, 1970; Beamish, 1977) to justify the choice of independent input vari-
ables for the transfer functions. While the choice of a normal reference station
with careful reference to other geological information may be useful for intcrpfeta—
tion purposes, the concept of a special normal station is difficult to justify physi-
cally.

The choice of independent input components becomes even more awkward
when the number of predictor variables p is not equal to two. For instance in the
spatial gradient model proposed by Kuckes et al. (1985) with p =5 some of the
"input" variables are gradient terms which cannot be identified with any particular
channel, but rather are linear combinations of various channels (with the method

of estimation proposed in Kuckes et al.). In general, for array data, where the
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total number of components becomes larger, and more complex models may be

useful, the simple multiple input single output transfer function approach becomes

increasingly awkward.

The standard TF approach is also difficult to justify on statistical grounds.
The statistical model used in the standard TF model assumes that noise is res-
tricted to the output channel. Specifically, using the notation from above, one
assumes that each observed output channel X;, i = p+1, m is a linear combination

of the p input channels plus an error term:

Xi=bi+e=iT,-jbj+e

=1

The standard approach to estimation of the transfer function parameters is based
on least squares (LS) estimation of each row T.; of the matrix T separately. This
is accomplished in the standard way by minimizing the residual sum of squares
from N sets of Fourier coefficients of the input and output variables

N

2 Xy — i T;bi?

k=1 1
.Note that the N independent input variable sets by, (k=1,N;i=1,p) are
assumed to be measured without error. All measurement error, as well as any

inadequacies in the model assumptions (i.e. about the external source structure) are

treated as noise in the output variable.

Recently, robust alternatives to LS have been applied to the estimation of
geomagnetic transfer functions (Egbert and Booker, 1986; Chave et al., 1987).
While these techniques have been shown to preform better than the standard LS
estimate, they are essentially based on the same sort of model assumptions that are
intrinsic to the transfer function approach - some variables are treated as indepen-

dent (and noise free) and others as dependent (and noisy).
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Clearly, it is seldom reasonable to assume that some channels are measured
exactly, while others are noisy. Again, this assumption may be approximately
valid for some frequency ranges in the single station MT impedance estimation
problem, where one type of field may be measured much more accurately than the
other. However, for the estimation of interstation horizontal magnetic field
transfer functions, where the measurement process is the same for both dependent
and independent variables, such an assumption seems absurd. The biasing effect
of noise in the input variables is well known (Jenkins and Watts, 1968, Gamble ez
al., 1979; Pedersen and Svennekjaer, 1984). The seriousness of this bias problem
for MT impedance estimates led to the development of the remote reference tech-
nique (Gamble et al., 1979).

It is much more reasonable to use a model which allows for noise in all
channels. Let X, denote the fundamental m-dimensional complex data vector con-
sisting of Fourier coefficients from the k'* data segment for all m measured chan-
nels of data. If we assume that the external sources are elements of the finite
dimensional space @ defined above, and we allow for noise in all channels, our
model for X is

X;=by+e = f‘, o + e = Ul + € (2.3.1)

=1

In (2.3.1) vuj gives the fields at the observation sites caused by the j"' external
source potential function ¢;. We will refer to these vectors (G=1,p)as the funda-
mental response vectors (FRV’s). U is the mxp matrix whose 7 row is u;. The
complex p-vectors O, give the magnitude and phase of the p source functions
¢, Jj=1,p for the K* data segment. In the two dimensional case p = 2, the vec-
tors Ot are just the polarization vectors froni the standard wave propagation theory

(e.g. Jackson, 1975). Following Samson (1983), we extend this nomenclature to

refer to the vectors O, as polarization vectors for the general case.
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This sort of model, with noise in all components, has been applied to
geomagnetic data analysis by Jupp (1978) and Park and Chave (1984). Both of
these papers considered the use of a model with measurement noise in all channels
for estimating the magnetotelluric impedance tensor for single station data. More
generally, models of this sort have been extensively studied in the case where the
data is real. These have been variously referred to in the statistical literature as

linear functional equation models, structural relationship models, factor analysis

models and multivariate errors-in-variables models. All of these linear statistical

models are thoroughly reviewed in Anderson (1984) who discusses the distinctions
between these models. Without worrying about these distinctions for now, we
will refer to the model of (2.3.1) as a multivariate errors-in-variables (MEV)
model. We defer discussion of model differences, together with other statistical

aspects of the model, until Chapter 4.
The model given in (2.3.1) is overparametrized. Let A be any non-singular
pxp matrix. Then )
Xk = Uak + e = UAA-lak + 6= U&k + e (2.32)

where

U=UA o=Al0

Thus we see that the parameters U and O, k = 1, N cannot be uniquely deter-
mined from the data. The parameters U and &, k = 1, N give rise to exactly the

same data values. On the other hand, letting @i; be the #* column of U, it is easy

R=sp{uj:jﬁl,p}=Sp{ﬁj:j=1,p} 2.3.3)

so that the response space R is uniquely determined.

to check that
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From (2.2.2) and (2.2.3), then, we have

r B

To be definite we consider the specific case where n = 2 and the external sources | )

The physical significance of this non-uniqueness can be readily understood.

0
are assumed to be plane waves. If we take . 0

¢ =x ¢2=Y

then the FRV’s u,, u, are the fields which would be seen at all stations in the

array for plane wave sources of unit magnitude that are linearly polarized in the x
would like to determine the L0 0 )

and y directions respectively. While ideally we
FRV’s from the data, this will not generally be possible without some additional In this case we can unambiguously identify the external source polarization associ-
information. The problem stems from the fact that we cannot directly observe the ated with any particular data vector b. This is only because we knew ahead of
external source polarizations for any of the data. time the form of the vectors u;. More generally lateral variations in conductivity

Consider a simple case of an array consisting of n stations of 3 component will cause local concentrations of currents which will locally distort the magnetic
onsi

( tic field only) data and ignore the effects of noise. Then the components fields, perturbing amplitudes, phases and directions at each station in an unknown
magne

£ a (noise free) observation b are manner (indeed these perturbations are precisely what we wish to estimate). In
of a (noise fre

,

1 this case the FRV’s Wiu not have the simple form of (2.3.4), and a precise deter-

B.(xy)

Bx(xll) mination of the source polarization associated with b is not possible. The ambi-
y

By(x) guity in the parameters stems from the fact that both the source polarizations

parameters o and the field basis vectors u; are unknown, and uncertainty in one

leads to uncertainty in the other.

B.(X,) While (2.3.2) says that mathematically we cannot unambiguously identify

By(x,) specific vectors in the response space with specific external source potentials, we

LBZ(X,,)

’ can use other physical or geological information to make such an identification, at

then the FRV’s

If the electrical conductivity of the earth varies with depth only, least approximately. In the context of interstation transfer functions the resolution

rnal horizontal

take a particularly simple form. For this particular case the inte of the ambiguity is equivalent to the problem of defining the "normal" reference

an be shown

982,

fields are equal (in amplitude and phase) to the external fields (this ¢ fields. The standard approach to this problem is to assume that the fields at one

to hold in general for plane wave sources over a 1-d earth; see Rokityansky, 1 particular station (station 1, say) are not perturbed by lateral conductivity varia-
pp 43-45). tions. This assumption imposes a constraint on the first two components of the

FRV’s,
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u‘-j=

ij
where 8l-j is the Kroenecker delta - i.e. it is assumed that (2.3.4) holds for the ‘hor-
izontal components at station one. This constraint allows us to identify the FRV’s
in terms of any pair of linearly independent vectors i1, @i, contained in R. If Uis
the matrix whose i* column is the it" FRV, U the corresponding matrix of the s,
le the 2x2 matrix consisting of the first two rows of U, and the constraint (2.3.5)

holds then it is easy to check that

. I,
U =200 = ;[ T ] (2.3.6)

where T is the matrix of transfer functions defined above in (2.2.7). Note that T
gives the values of all components of the fields seen at all other stations relative to
the values of the horizontal fields observed at station 1. This interpretation is
valid independent of any assumptions about the "normality" of this reference sta-
tion. Only the interpretation of the vector given in (2.3.6) as an FRV depends on

the assumption that the reference fields are normal.

In statistical terms, the parametrization of the MEV model of (2.3.1) is not
_identifiable (Bickel and Doksum, 1977 p. 60) (i.c. distinct parameters give rise to
identical data). To obtain a parametrization that is identifiable we must impose
some constraints on the FRV’s and/or the polarization vectors. Many sorts of con-
straints can be imposed to make the parametrization of the MEV model
identifiable. Anderson (1984) discusses a number of these. For our purposes the
FRV’s, which characterize the response of the earth to the external sources,
represent the parameters of interest. The polarization vectors (which characterize
the sources) are nuisance parameters. We thus concentrate our attentiqn on the
unique identification of the FRV’s. As we have already discussed, one way 1o
make the MEV model parametrization identifiable is to make the normal station

assumption of (2.3.5). We will adopt a more general point of view.

34

As we have noted in (2.3.3) the response space R is uniquely determined.
Thus, one way to resolve this non-uniqueness is to adopt the viewpoint that the
fundamental parameter to be estimated is R. Treating R as the fundamental
parameter emphasizes the indeterminacy which is fundamental to our problem.
When noise is present in the data, estimates R of the response space will be ran-
domly perturbed from R. We can use a statistical model to compute estimation
errors which serve to characterize the degree of uncertainty in our knowledge of R
which is due to this noise. Our uncertainty in the FRV’s within R is of an
entirely different nature. This uncertainty is present even for an infinite amount of
noise free data. It is not possible to quantify the degree of this uncertainty from
the data alone; additional information or assumptions must be provided. The

assessment of this uncertainty is essentially independent of the statistical parameter

estimation problem.

There are other reasons to treat R as the fundamental parameter. As we have
indicated above, all interstation and intercomponent transfer functions, can be
computed from the FRV’s which span R. More generally, it is not hard to check
that if { @z i =1, p } is another basis for R, then the transfer functions can be
computed in an identical manner from these vectors. Thus, all interstation and
intercomponent transfer functions are determined by R; the response space formu-

lation thus subsumes the transfer function formulation.

While in theory we can think of the set of p-dimensional subspaces of C™ as
the parameter space, in practice it will be necessary to consider explicit representa-
tions of these subspaces. Such explicit representations will be useful fdr the
presentation of estimates of R, and, they will be necessary for the derivation of
statistical properties (such as estimation errors) of these estimates. Wé will make
the representation explicit in two different ways. The first approach maintains our

general formulation and represents the response space as the projection matrix Pp
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which projects C,, onto R. We will discuss and apply this approach in Chapter 4.

The second approach is a generalization of the normal station constraint
described above - i.e. the non-identifiability of U is resolved by imposing‘more
general linear constraints on the columns of U. We will consider constraints of

the general form
wu=C (2.3.7)
where W is a pxm matrix of constraint coefficients and C is a pxp matrix. If, as
above, the columns of {U form a basis for R then we can find U satisfying the con-
straints (2.3.7) as ’
U =0wUy'C
For this to be possible, of course, WU must be invertible. Note that this condition

does not depend on the choice of the basis U. If the columns of both U and U

form a basis for R, then there is a non-singular matrix A such that UA=Uso
WU = WUA

Since A is invertible, WU is non-singular if and only if WU is.
The normal station constraint discussed above is a special case of (2.3.7)

obtained by setting
W=[IZIO] C=212

This general constraint formulation allows some useful alternative approaches to
the definition of normal fields. One which we will use in particular for the plane
wave source case p = 2 defines the average horizontal fields as normal - i.e. we
assume that the fields averaged over the array are roughly the same as would be

seen for a 1-d earth. This is accomplished (for 3 component data at n stations)

with

__}_ 100 C=21
W—n[oml 2
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In the absence of other information, we would argue that this constraint is prob-

ably the most reasonable for geomagnetic induction problems.

2.4: Estimation of the Response Plane

Eigenvectors of the Spectral Density Matrix

We now consider the estimation of the response plane R at frequency ® from
a series of N frequency domain data vectors X;. We describe the basic idea
behind our approach here but postpone the full development of the statistical

methodology until Chapter 4.

The sample spectral density matrix (SDM) at frequency o is
N

§=—L ¥ XX, (2.4.1)
N k=1

where here, and subsequently, the superscript * represents the complex conjugate
transpose. The SDM is basically the multivariate analogue of the power spectral
density for stationary time series and gives a frequency domain description of the

joint second moment properties for a multivariate time series. S provides a basic

method of moments estimator of the true SDM. A thorough treatment of the

SDM and many applications are given by Brillinger (1981). From our point of
view, in Which we concentrate on a single frequency at a time and ignore most of
the time series aspects of this problem, it is most useful to consider the vectors X;
as independent identically distributed complex random m vectors. Then S is just
the sample covariance matrix. Note that S is an mxm positive semi-definite Her-
mitian matrix.

Consider first the case of perfect, noise free data where the external sources
are restricted to the p dimensional space ®@. Then the data vectors satisfy (2.2.6)

which we may write in matrix notation as

i1

= Ja (2.4.2)
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where Z is the mxN matrix whose k* column is the ¥ data vector X;; U is, as
above, the mxp matrix of response vectors; and O is the pxN matrix whose ik

element is o;. Then we have

S =~1 25" = U 'U* = UZ,U” (2.4.3)
where we define X, = ~loo” Since S is Hermitian it can be diagonalized by a
unitary matrix
S=VIrv’
where T = diag(y;, - - - .Y, is a diagonal matrix and V is an mxm unitary matrix (
V'V=1,). The i column of V, v; is an eigenvector of S and v; the correspond-

ing eigenvalue. We now will show that the number of non-zero eigenvalues is p

and that the corresponding eigenvectors determine the response plane R.
First
Yvi = Sv; = (UZU™;
So, provided ¥; # 0 we may write
vi = %0 EU'Y)

which showé that v; is a linear combination of the columns of U (the response
vectors) and thus v; € R whenever y; #0. Let [ be the number of non-zero eigen-
values of S, and order the eigenvectors v; so that the first / of them correspond to

these eigenvalues. Then we have

Sp{vi,i=1,l} < R

Since the eigenvectors v; are linearly independent and since the dimension of R is

p we have I <p . Note also that [ is the rank of S. From the representation of S

in (2.4.3) and the fact that the matrix U is of full rank ( = p ) we see that the rank

of S is equal to the rank of the pxp matrix Z,. If this is of full rank (i.e. non-
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singular) then we have / = p and
Sp {vi: i=1, p} = R (2.4.5)

The matrix X is essentially the covariance matrix of the polarization vectors
0, and can thus be used to compute the average power for any chosen polariza-
tion. If X, is singular then some of the possible source polarizations allowed for
in the model have not been sampled. Note that if the sample size is too small
N < p, then this situation must occur. In general, however, with sufficient data we
expect that all polarizations will be sampled so that X, will be non-singular. Oth-
erwise, a reduced model for the external sources would be called for. Hence, it is
reasonable to assume that X, is non-singular so that for perfect (noise free) data,
the eigenvectors associated with the non-zero eigenvalues of S exactly span the

response space R.

For real data, which will always be contaminated by some noise, the situation
will be more complicated. We consider first the expected value of the sample

SDM in the presence of noise. Now with the data vectors X satisfying (2.3.2) a

_simple calculation shows that, for errors which are uncorrelated with the signal

= = E@S) = UL, U* + E(ee”) = Zg + Iy (2.4.5)

In (2.4.5) E is the expectation, X¢ represents the noise free signal covariance, and
Zy is the covariance matrix of the error (noise) vectors ;. The situation is by far
simplest if the errors are uncorrelated and of equal magnitude in all components

so that the error covariance has the simple isotropic form
Iy=0%1, (2.4.6)
If v; is the i eigenvector of of the signal covariance matrix Xg then

Ivi= g+ Iy v,=y+06)v;
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so that v; is also an eigenvector of the total (signal + noise) covariance matrix
T = ES. Note that now alI eigenvalues are non-zero; the m — p smallest eigen-
values of T are now all equal to 62 Also the eigenvectors ‘associated with the
largest p eigenvalues remain identical; these p "dominant" eigenvectors still pre-
cisely define the response space R.

The matrix T is the expectation or mean of the sample SDM S and represents
(we hope) the SDM for an infinite amount of data. When we have only a finite
sample (always) there will be random deviations of S from it’s mean. In particu-
lar, the distribution of eigenvalues will be perturbed from the simple form
described above. The signal-to-noise ratio can be roughly characterized by the
ratio Y/o? where 7 is a typical size for one of the non-zero eigenvalues of Xg. If
this signal-to-noise ratio is reasonably large we would expect that the distribution

of eigenvalues will approximate the ideal case described above in a useful way.

Specifically, we would expect that there will be p 1arg¢ eigenvalues, roughly of

magnitude Y, and m—p small eigenvalues with approximate magnitude o2 We
would also expect the eigenvectors associated with the p largest eigenvalues to
define a p dimensional subspace which is perturbed from, but reasonably close to
the response space R. Thus, with a reasonable signal-to-noise ratio we would

expect that a good estimate of R would be
§=Sp{vj:j=1,p} (2.4.7)

In fact this estimate can be justified by several explicit statistical criteria. We will
discuss these issues, as well as the estimation of errors for these estimates in
Chapter 4.

When the errors vectors do not have the simple isotropic form of (2.4.6), the

situation can be far more complicated. If the signal to noise ratio is reasonably

large, the eigenvalues will still divide into two fairly distinct groups, consisting of
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p large, and m—p smaller eigenvalues. Now however, the distribution of of the
smaller eigenvalues will generally be more complicated. While in the isotropic
errors case the m—p smallest eigenvalues are all roughly equal, for the general case
these eigenvalues may be quite spread out. More significantly, the eigenvectors of
the total expected covariance matrix X will not in general be the same as the
eigenvectors of the signal covariance matrix Zg. Thus the estimate of the response
space R given in (2.4.7) will in general be perturbed from the true response space
even in the idealized infinite data case. In statistical terms, R defined by (2.4.7),

will in general be an asymptotically biased estimate of R.

An asymptotically unbiased estimate of R can be computed if the the struc-
ture of the noise covariance matrix Xy is known or can be consistently estimated
up to a multiplicative constant (e.g. Glesér, 1981; Park and Chave, 1984).
Roughly, this estimate is computed by using the matrix Xy to transform the sam-
ple SDM S so that the isotropic error assumption holds. We describe this in more
detail in Chapter 4, where we also consider approaches to the estimation of the

form of the noise covariance.

For a number of reasons we should expect that the error covariance will often
fail to be isotropic. If electric field measurements are included in the analysis then
we are faced with the problem of chosing the units that the fields are expressed in.
Whether or not the magnitude of the noise power in the electric and magnetic field
components are equal clearly depends on the relative choice of units for these
fields. Even for fields of one type, measured with instruments with theoretically
uniform noise characteristics, the assumption of equal error magnitudes in all
channels may often be questionable. In electric field measurements, for instance,
electrode noise may be the dominant noise. The magnitude of this electrode noise
will depend in part on soil type and moisture content, and will thus vary from site

to site. In all channels, the magnitude of local cultural noise is highly site
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dependent, and the effects often vary from channel to channel at a fixed site.
There are other sources of noise in the magnetic fields which can effect different
components differently. For example, vibrations of the magnetometer sensor in
the earth’s magnetic field results in non-isotropic noise in the measured magnetic
fields (Pedersen, 1986). The effects of variations in temperature on instrument

response also can effect the magnetic components differently.

As long as the noise remains incoherent between channels, the noise covari-
ance matrix I is a diagonal matrix, with potentially different entries on the diag-
onal for each channel. More generally, some forms of noise may be coherent
between channels so that Iy need not be diagonal. This coherence may occur
between components at a single site or on an array wide basis. The first case can
easily arise, for instance, with local cultural noise in the magnetic fields. The
second case can arise from several distinct causes. For instance, some sources of
cultural noise (e.g. DC power lines or DC electric railways; Schnegg et al., 1986))
can extend over large regions and can thus lead to noise which is coherent
between measurements made at widely separated sites. There are other sources of
coherent noise which are not anthropogenic. For instance, at daily variation

. periods the affect of diurnal temperature variations on instrument responses may
result in noise which is coherent over large areas. As a further example, electric
fields on land induced by oceanic tidal motions may be considered a coherent
source of noise. This last example, may seem to strain the definition of noise a

bit, since tidally induced electric fields are a part of the true electric field signal.

Indeed, for Junge (1986), this was the desired signal. In a sense the same point

could be made for cultural noise, both local and large scale - it is not really noise
but is part of the true electromagnetic signal.

The problem of deciding what is noise and what is signal will arise often in

this dissertation. We will often treat a portion of the measured electromagnetic
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fields as noise even when this signal is coherent between stations and arises from
ionospheric sources. The distinction between noise and signal may often seem
rather arbitrary. To a large extent, the distinction depends on what one is trying
to do with the data. If one is interested in an exploratory analysis designed to
detect what sorts of information the data contains, it could well be argued that
anything which is coherent across the array is signal. If, on the other hand, we
make specific model assumptions about the signal, and the goal is to make formal
inferences about specific parameters (e.g. the response of the earth to plane wave
sources), then it is possible, and we would argue reasonable to treat the effect of
deviations from the model assumptions as noise. From this perspective it is the
model assumptions which define what is noise and what is not. Those fields
which arise from the assumed sources are signal, those which do not are noise.
This point of view is most reasonable if the deviations from the simplifying model
assumptions are relatively small perturbations - i.e. if the assumed model provides
a reasonable fit to the data. If this is not the case, then one could argue that it
would be more reasonable to expand the model. At any rate, we shall see that the
violation of our simplifying assumptions about sources will génerally result in

complications which can be reasonably treated as coherent noise.

From the above discussion we see that, in general, unbiased estimation of the
response space will require knowledge of the noise covariance matrix. In addition
it is clear that estimation errors and other properties of response space estimators,
will depend on the noise structure in a fundamental way. Thus, an important
aspect of the estimation of the response space is the estimation of Z,. Our
approach to this problem will be described in detail in Chapter 4. In the
remainder of this chapter we will adopt a more exploratbry point of view and look

at some specific examples.
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2.5: Some Examples

We will now present some example applications of the ideas which have
been discussed in this chapter. We will discuss in particular results from a series
of 3-5 station, 3-component (m = 9-15) MV (magnetic fields only) arrays which
were run in Southwestern Washington in 1982 (figure 2.1), and a single five sta-
tion 5-corriponent (electric plus magnetic fields) (m = 25) MT linear array that was
run in Western Oregon as part of the EMSLAB project (The EMSLAB Group,

1987; figure 2.2). All of these arrays were located at geomagnetic mid-latitudes.

We give first a brief description of some‘experimental procedures and general
data characteristics which may be useful for interpreting some of the results
described below. Magnetic field measurements were made with EDA fluxgate
magnetometers, which were either partially or fully (EMSLAB array only) buried
to limit temperature effects. Electric field measurements were made using lead-
lead chloride electrodes spaced roughly 250 meters apart and differential input
amplifiers. Electric fields were high pass filtered (with a cut off period of roughly
two days) and all components were low pass filtered to reduce aliasing. Data v.vas
digitally recorded with either an 8 or 16 second §amp1ing interval. The total ime
geries length used in the analyses described here ranged from 10 days for most of
the 3-component MV arrays to about 4 weeks for the EMSLAB MT line. The
periods which we will consider are in the range 25 - 10000 seconds. Time seres
processing methods used are outlined at the beginning of this chgpter and
described in more detail in Egbert and Booker (1986).
All of the arrays discussed here (and indeed all arrays studied in this thesis)
are small, both in the sense that the number of stations involved are few, and

(more importantly) in the sense that the spatial extents of the arrays are small.
kilometers and total

(Station spacings range from roughly 10 to a maximum of 50

array sizes from a few tens to less than 200 kilometers.) At geomagnetic mid-
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latitudes external source length scales are typically on the order of several
thousands of kilometers (e.g. Porath et al., 1971), so that source fields are usually
fairly uniform over arrays of this small size. We would thus expect that the exter-
nal sources could typically be treated as plane waves of infinite horizontal extent.
Indeed, as we have discussed above, it is this assumption which rigorously
justifies the usual intercomponent and interstation transfer functions which have
become a standard tool for data analysis and interpretation in regional array stu-

dies (e.g. Beamish, 1977; Ingham et al., 1983; Alabi, 1983; Gough and Ingham,
1983).

The plane wave source assumption corresponds to a response space of dimen-

sion p = 2. Thus, if the plane wave source assumption is reasonable, the SDM S

should have two dominant eigenvalues. In figure 2.3 we plot the ordered eigen-

values for the 25x25 SDM computed from 5 MT stations on the EMSLAB profile
for a period of 1000 seconds. As expected, there are indeed two dominant eigen-
values corresponding to the two plane wave source polarizations. Note that while
the first two eigenvalues are, as expected, much larger than all of the others, there
is a significant amount of structure in the remaining eigenvalues - the isotropic
noise model which leads to a simple estimation theory for the plane wave
response space will clearly not be appropriate. There are several additional eigen-
values which are reasonably well above background noise levels. We will explore
the significance of these more fully in below and we will demonstrate that they
can be related to the violation of our simplifying source assumptions. We first
consider the dominant two eigenvalues and the associated eigenvectors which

define the plane wave response space in somewhat more detail.

The occurrence of two dominant eigenvalues of the SDM is ubiquitous. In
our experience with over 500 SDM’s from roughly 30 arrays, the matrices S are

always approximately of rank two. The fraction of the total power which is fit by
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the plane wave source model (more precisely: a two dimensional response space)

is given by
m
R=(n )/ XHi=(n+r)/TrS . (2.5.1)
i=1

Here ¥y, i = 1, m are the eigenvalues of S, ordered largest to smallest, so that
Y, + Y, represents the power in the two dimensional space spanned by the two
dominant eigenvectors, and Tr S, the trace of S, gives the total power in all chan-
nels. In figure 2.4 we plot R? as a function of frequency for a set of 9 three com-
ponent arrays. Note that at all frequencies R? is greater than .95 and often R? is

nearly one.

For the EMSLAB array each eigenvector of S is a 25 dimensional complex
vector whose components correspond to the five field components By;, By;, By, Ey;
and E,; at each of the five stations (i=1,5). We can display 10 of the 25 com-
ponents corresponding to the horizontal magnetic (or electric) components by plot-
ting the real and imaginary parts of the 2 component field vectors (By; By;) ( or
(Exi» Ey; )) for each station on a map of station locations. In figure 2.5 we exhibit
such plots for the eigenvectors corresponding to the two dominant eigenvalues
from figure 2.3. Note that on the magnetic field plot the components correspond-
ing to vertical fields B,; are printed under the station locations so all 25 com-

ponents are plotted.

The magnetic field plots (figures 2.3(a) and (c)) show that the horizontal field
components of both of the dominant eigenvectors are fairly uniform over the
array. While some variations are apparent, the approximate uniformity of these
fields indicates that the plane wave source assumption is at least a reasonable
approximation. We thus interpret the fields plotted here as estimates of the mag-

netic fields which would be seen at the five stations in the array for two distinct

plane wave source polarizations. Although, as we have discussed above, the exact
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external source polarizations cor;esponding to these total field vectors are indeter-
minate, it is reasonable to assume that the source polarizations are roughly the
same as the polarizations of the total field vectors. Note that since the real and
imaginary field vectors are not co-linear the source polarizations are of the general
elliptic form. The polarization of the fields for the first eigenvector represent the
source polarization of maximum power, while the second eigenvector gives the
polarization of minimum power. Note that at this period the dominant polarization
has most of it’s power in the direction of geomagnetic north. This feature is fre-
quency dependent; it is typically quite noticeable at a period of 100 seconds but

disappears at longer ( = 3000 seconds) periods.

The vertical magnetic and horizontal electric fields which are produced by
these two two elliptically polarized sources are displayed in figures 2.5(a) and (c)
and are plotted in figure 2.5(b) and (d), respectively. Note that these components

do not show the same uniformity as the horizontal magnetic fields.

While the two dominant eigenvectors plotted above completely define the
response space, they are somewhat difficult to interpret since they correspond to

elliptical source polarizations. Interpretation is much easier if the source polariza-

“tions are linear and if the coordinate system is chosen to match the dominant geo-

logic strike of the region. As discussed in section 2.3, the unique determination of

the total fields corresponding to any given source polarization requires some addi-

tional assumptions to define the "normal” fields. In figure 2.6 we plot the mag-

netic and electric fields (again at a period of 1000 seconds) corresponding to
source fields linearly polarized in the east-west and north-south directions. For
these plots we have assumed that the average fields are normal and can be used to
uniquely define the source polarizations (see section 2.3). Note that we have
chosen geographic coordinates here because the dominant geologic strike (most

significantly the continental margin) is roughly north-south.
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The magnetic fields for the north-south polarization have nearly uniform hor-
izontal components and very small vertical components. In contrast, there are
relatively large variations in the horizontal components and significant vertical
field components for the east-west polarization. This reflects ‘the dominant north-
south strike to the conductivity variations in this region, with the Pacific coast, the
Willamette Valley and Cascade ranges all trending north-south. The most obvious
feature of the electric fields is the large variation in both direction and magnitude
of the fields. This can largely be ascribed to the distortion of the electric fields by

near surface conductivity inhomogeneities.

The geologically interesting part of the horizontal fields is the "anomalous"
part - i.e the deviation from the normal fields. These can easily be obtained from
the total fields displayed above (once a normal field definition has been decided
upon) by subtracting the normal fields. In figure 2.7, we display the anomalous
horizontal fields from the EMSLAB array for three periods with east-west induc-
ing magnetic fields. For this calculation we have taken the fields at the western-
most station as normal. The effect of the Willamette valley, clearly seen at 100
seconds, weakens rapidly with increasing period. A deeper anomaly is seen in the
Eastern part of the array (in the High Cascades). This is still significant at 3000
seconds. A much more thorough (but still quite preliminary) interpretation of the
data from the EMSLAB experiment is given by The EMSLAB Group (1987).

We now turn our attention to the smaller eigenvalues of the SDM shown in
figure 2.3. In the context of the plane wave source assumption these eigenvalues
represent noise. As we shall now show, a significant fraction of this "noise” is

coherent across the array and reflects the fact that the sources are not exactly

plane waves. The clearest demonstration of this involves the eigenvector associ- -

ated with the third largest eigenvalue.

S
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If the plane wave source assumption holds exactly, then over a 1-d earth the
vertical magnetic fields B, will ‘be zero. If in fact, this assumption holds only
approximately, with the source length scales r; being finite but still large com-
pared to the skin depth of the magnetic fields J, the vertical fields will be propor-
tional to &/rg (Schmuker, 1970). ‘These vertical fields will vary slowly over source
length scales; hence, for a small (compared to typical source length scales) array,
this component of source related B, will be approximately equal and in phase at
all stations in the array. The fields seen in the array due to this effect will thus be

approximately proportional to the unit vector

u,=—%[00100:---:00100]T (2.5.2)
which is zero for all horizontal components and equal and in phase for the vertical
magnetic components for all stations. In figure 2.8 we plot the fraction of power
in the third eigenvector v4 which is parallel to this "source Z" vector u, for the
EMSLAB MT array. For periods above 1000 seconds, the third eigenvector is
essentially coincident with u, This demonstrates graphically that at longer

periods violations of simplifying source assumptions are the dominant source of

-"noise" in fitting the vertical field response to plahe wave sources. This has been

noted previously in the context of single station vertical field transfer function esti-

mation by Beamish (1979) and Egbert and Booker (1986).

Figures 2.9 and 2.10 summarize similar results from 9 three component MV
arrays. Again, for periods beyond about 500 seconds v; is essentially parallel to
the source Z vector u, (figure 2.9) and the power in this eigcnvectof makes up a

significant fraction of the total noise power. We illustrate this in figure 2.10
where we plot (for 9 MV arrays)

10
Y3/ XY
1=3
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- the fraction of the total residual power (power which is not in the two dominant

plane wave eigenvectors) which is in the third eigenvector.

While the coincidence of the third eigenvector with the-source Z vector u,
explains a significant fraction of the noise power, there is clearly substantial addi-
tional structure in the eigenvalues plotted for the EMSLAB array in figure 2.3. In
contrast to the first three eigenvectors, which can be readily related to specific
aspects of geomagnetic array data, the subsequent eigenvectors are not so clearly
interpretable by themselves. This is because the additional structure in the data is
due to several effects (e.g. unusually noisy stations, differences in noise power
between electric and magnetic field measurements, complications to the simple
source effects model discussed above in connection with the third eigenvector).
These are all mixed up in the remaining eigenvectors. To understand the addi-
tional structure in the data some alternative approaches are thus required.

One approach which has proved useful is to analyze the spectral density
matrices of the horizontal magnetic and electric fields separately. The SDM’s
formed from only the horizontal magnetic or electric field components are 10x10
complex matrices which we denote by Sy and Sg respectively. In figure 2.11(a)
and (b) we plot the ordered eigenvalues of Sy and Sg. In both cases there are two
dominant eigenvalues (corresponding to the plane wave sources), but the patterns
of the smaller eigenvalues are quite different for the two matrices. For Sy the
eight smallest eigenvalues break into two groups - two intermediate eigenvalues
(the third and fourth largest) are roughly an order of magnitude larger than the six

smallest eigenvalues which are all of comparable size. For Sg there is no clear

break into-distinct groups and the variation in the size of the smallest eigenvalues
is much greater.

The eigenvectors associated with the intermediate eigenvalues of Sy for

periods of 1000 and 3000 seconds are plotted in figure 2.12. For the third

]
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eigenvector v; at both periods the components of B, and By vary linearly along the
array transect. The vectors v; thus represent gradients of the horizontal magnetic
fields. The results for the fourth eigenvector v, are somewhat less clear, but the
plotted fields for v, contain a substantial gradient component, particularly at 3000
seconds.. Note that v3 and v4 correspond to gradients in two roughly perpendicu-
lar source polarizations. This result is not particularly surprising - a natural
refinement of the uniform plane wave source model would allow for gradients in
the source field components in addition to the uniform fields. For a linear array,
we can observe‘ gradients only in the direction of the array transect. These can
occur independently for each component B, and B,; hence the two gradient terms
observed are exactly what we would expect. Note that this result is unusually
clear. For arrays with more uneven station “spacings, or with one or more unusu-
ally noisy channels, the third and fourth eigenvectors are difficult to associate

directly with gradients (although some gradient component is usually evident).

This result suggests that the dimension of the assumed external source space
®, and hence of the response space R should be expanded to treat the gradient
terms as signal. Since the relationship between horizontal gradients and vertical
fields can be used to estimate an equivalent 1-d MT impedance (Schmuker, 1970;
Kuckes, 1973; Lilley et al., 1976; Jones, 1980; Kuckes et al., 1985) the gradients
can clearly be used to obtain geologically interesting information. We will
explore this idea further in Chapters 3 and 4.

The uniformity of the six smallest eigenvalues of Sy indicates a relatively
uniform source of noise is present in the magnetic field measurements (see also
the plateau in the ordered eigenvalues in figure 2.3). We interpret this as being
indicative of a magnetometer system noise level which is at a relatively constant
level at all stations. In contrast the variation in size of the smaller electric field

eigenvalues suggests that the telluric system noise is highly variable from site to
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site. This may well indicate that there is a great deal of interstation variability in
electrode noise levels and that electrode noise dominates the residuals from the
plane wave model fit. Note however, that as a result of surface distortion effects
electric field signal amplitudes vary greatly both between stations and between
polarizations. Features in the electric field SDM arising from source effects (such
as gradients) will also be distorted and of variable amplitude from station to sta-

tion. This can contribute to the variability in the smaller eigenvalues.

As a result of this interstation variability in the amplitude of both signal and
noise the smaller eigenvalues and associated eigenvectors of Sg are difficult to
interpret directly. Nevertheless we can demonstrate here that source related effects
are probably significant in the electric field measurements also. We can estimate
the fraction of power in the magnetic (or electric) fields which is inconsistent with
the plane wave source assumption in terms of the ordered eigenvalues ¥;, i = 1, 10

of Sy (or Sg). Specifically we define

2 |1 5 iﬁ_"_l’?_ B (2.5.3)
o = | g LW 10

with o} defined similarly in terms of the ordered eigenvalues of Sg. The relative
noise parameters o% and o% represent the average total noise power (ie. the
power in the daté which is not consistent with the plane wave source assumption)
in the electric and magnetic fields normalized by average signal power. Note that
these estimates of noise power are only roughly correct since some noise power
will be present in v; and v,. This can be refined easily, but for the purposes of
this discussion these simple estimates of noise power are sufficient.

In figure 2.11(a) we plot o} and o} for five periods from 100 to 10000

seconds. The plot shows that the relative noise for the magnetic fields decreases

with increasing period, while the relative noise increases with increasing period for

the electric fields. This result is clearly relevant only to the particular types of
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instruments used in this array. For instance, the high relative noise level in the
magnetic fields at short periods (i.e. hundreds of seconds) reflects the relatively

high system noise levels for EDA fluxgate magnetometers at these periods.

We will now demonstrate that at longer periods a substantial fraction of the
misfit between the electric and magnetic fields is not due to local noise. Instead
this misfit is dominated by a source of ‘noise’ which is coherent across the array.
Note that with the definition of (2.5.3) the relative noise parameters o and o%
include all deviations from the plane wave source assumption, including both local
noise (i.e. instrumental noise plus local cultural noise which is incoherent between
stations) and the horizontal magnetic field gradients discussed above. The parame-
ters 0'%, and 0‘%; thus represents an upper bound on the (relative) local noise levels
and the sum c%l + o} gives an upper bound on the total (electric plus magnetic)
noise which is of a strictly local nature. The actual level of local noise will in
general be smaller than this.

Using electric and magnetic field data from each station separately we can
estimate the impedance tensors for each station using standard least squares
transfer function estimation procedures. In the standard way, we obtain an esti-
mate of the fractional misfit between predicted and observed electric field com-
ponents for each station - i.e. n% = 1 — R: where R? is the multiple coherence for
the j* electric field component (j = 1, 2) at the i* station. If all of the misfit
between electric and magnetic fields is due to noise of a strictly local nature then
n?}, J =1, 2 should represent the total (electric + magnetic) fractional noise powers
at the i*® station. Let 1?2 be the average of the N ,-j's weighted by the electric field
signal power in the /* component at the i station. If all of the misfit between the
electric and magnetic fields fit to a single station transfer function were due to

local noise we can show that we would have 1% < o + o%.
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In figure 2.12) we plot of + o along with n%. For periods beyond 1000
seconds T2 exceeds of + o%;; at: 8000 seconds m? is larger than o + c%; by a fac-
tor of roughly five. This implies that for fitting MT impedances at. these periods a
significant fraction of the noise cannot be of a local nature. While some of this
non-local noise could represent large scale cultural noise or temperamfe effects on
the instruments, we will show with a more careful analysis in chapter four that

most of this non-local noise is source related.

The analysis of the noise structure for the EMSLAB MT array described here
is rather tentative and exploratory. Methods which we will develop in the follow-
ing chapters will allow us to make more definitive statements about the character
of this noise and its relation to source complications. The results presented do
however give a feeling for some of the complications which should be allowed for
in any statistical estimation scheme. We will use this as guidance in the develop-
ment of our statistical model. These results also give some indication of the
power of multivariate methods. With a univariate transfer function estimation
approach the misfit is characterized by a single number (the mean square residual,
say) which will in general include instrumental and cultural measurement noise as

. well as effects due to violations of model assumptions. With the multivariate

approach these sources of noise can be distinguished.
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Figure 2.4 Fraction of total power in first two eigenvalues (R?) vs. frequency:

results for nine 3 component MV arrays. Solid line is average value of R?,
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Figure 2.5 Dominant eigenvectors for EMSLAB MT profile: period = 1000 s.
The eigenvector is of unit magnitude. Scales for magnetic and electric field
vectors are given at the top center for each figure.
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(vertical field values are printed under station location).
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ANOMALOUS FIELDS - EMSLAB
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' Figure 2.7 Anomalous horizontal magnetic fields for EMSLAB profile: (a) 100 s
Figure 2.6 Magnetic and electric fields corresponding to linear polarizations of (b) 300 s (c) 1000 s (d) 3000 s. Vertical field values are printed under sta-
unit magnitude for EMSLAB MT profile. For this plot, the average fields are ; tion location. Scale is at upper right on figure (a). A significant anomaly
assumed to be ‘normal’. Scale is at top center of each figure. Period is 1000 ; (40% of average field values) is seen at 100 seconds at station AME in the
s as in figure 2.5. The (25-dimensional) vectors plotted here are linear com- center of the Willamette Valley. A deeper anomaly is seen at the eastern-
binations of the vectors plotted in figure 2.5. ' most station. This anomaly peaks at around 300 s and is still present at 3000
(a) north-south magnetic field polarization - magnetic fields s. These conductivity anomalies are also seen in the vertical fields, although
(b) north-south magnetic field polarization - electric fields at longer periods these fields are dominated by the coast effect.
(c) east-west magnetic field polarization - magnetic fields
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Figure 2.14 Upper bound on local noise (normalized by signal) o} + o} plotted
with actual average fractional misfit 1?2 computed from single station results.
At longer periods, the total misfit is much greater than the upper bound on
local noise, indicating that a significant fraction of the ‘noise’ is not local; we
will relate this to source effects in chapter four. ’

Chapter 3
A Random Source Model

In Chapter 2 we developed the notion of the response space and related this
idea to the usual transfer functions used in geomagnetic data analysis. We found
that a rigorous justification of these methods depended on the assumption that the
external source potentials were restricted to a space of finite dimension p. In fact,
for any realistic situation, the set of all realizable source potentials @, and hence
the response space R, will be an infinite dimensional space. The transfer
function/response space approach works in practice because this infinite dimen-
sional space can often be well approximated‘ by a space of low dimension. The
examples considered at the end of Chapter 2, where we demonstrated that the data
vectors from a series of small MV and MT é:rays could be well approximated by
elements of a two dimensional (plane wave source) response space, provide a
graphic illustration of this idea. Our preliminary analysis of these arrays has also
demonstrated that there are additional coherent features in the data which are not
consistent with the simple plane wave source interpretation. We have interpreted

these features in terms of violations of the plane wave source assumption.

To better understand how deviations from the assumed finite dimensional
source space effect the data, we now drop this assumption and consider more gen-
eral stochastic models for randomly varying external sources. In general, we will
assume that the source potentials ¢ are realizations of a random spatial process
and study the statistical properties of the magnetic and electric fields observed at a
finite number of points x;, i = 1, n. Although we can make some general qualita-
tive statements about the most general case (three dimensional conductivity, arbi-
trary source distributions), to be quantitative we will have to make very restrictive
assumptions. Specifically, we will for the most part assume that the conductivity

is one dimensional (1-d), varying with depth only, and that the sources are
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spatially homogeneous. This model will allow us to compute the second moments
of the random electromagnetic fields F(x) - i.e. the spatial covariance tensor
K(xx") = EFXF(x)"). The elements of the expected SDM X = E(S), for syn-
thetic arrays consisting of stations in any given locations, can in turn be computed
from K(x,x). We can thus use the mbdel to explore the behavior of the eigen-
values and eigenvectors of ¥ under assumptions about sources that are somewhat
more reélistic than the finite dimension source assumption considered in Chapter

2.

We will show that most of the features we observed in our examples at the
end of Chapter 2 can be readily explained by this simple model. Ultimately, we
will see that this model provides strong justification for our response space formu-
lation, particularly for arrays which are small compared to typical source length
scales. For such small arrays we will see that the eigenvalues break into distinct,
well separated clusters. The first cluster consists of two eigenvalues, and the asso-
ciated eigenvectors correspond approximately to plane wave sources. The ‘second
cluster consists of three eigenvalues. For regular arrays with uniform station spac-
ing these eigenvectors correspond to a set of canonical horizontal field gradients.
In theory, there will be additional clusters of eigenvalues; in practice these will be

lost in the background noise.

We will also see, that for arrays of fixed spatial extent, the features of the
first few eigenvalues and eigenvectors of T are insensitive to the density of sam-
pling stations. Even with a large number of stations the same clusters of eigen-
values occur, and the associated eigenvectors correspond approximately to the
same pattern of fields sampled on a denser grid. It is interesting to consider the
limiting case where the fields are sampled at all points in a bounded region §. In
this limiting case the analogue of the matrix X is just the covariance tensor

K(x,x’), and the matrix eigenvalue problem is replaced by the integral equation
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analogue

£ KX, x)V(X)dx" = yW(x) (3.0.1)

Using standard results from the theory of linear operators, we will show that the
eigenvalues of (3.0.1) form a discrete set. Furthermore, the eigenvectors associ-
ated with positive eigenvalues correspond to fields in the region S which are real-
izable (i.e. are consistent with the physics and the electrical conductivity distribu-
tion). Any observable fields can be written as a linear combination of these posi-
tive eigenvalue modes. In the context of our random source model, the
coefficients of the expansion are uncorrelated random variables whose variance is
given by the corresponding eigenvalue. The eigenvalues of (3.0.1) thus form a
sort of discrete spatial power spectrum for the fields restricted to a bounded

region.

Our simple 1-d model shows that for small arrays most all of the power is in
the modes associated with the first few eigenvalues; for this case a finite dimen-

sional response space model is thus a good approximation. The considerations

_outlined above indicate that this property should ‘hold in general for geomagnetic

arrays, although the interpretation of the eigenvectors in terms of known simple
sources may be more difficult than in the small array case considered here. This

is an interesting problem for further study.

3.1: A 1-d Random Source Model
Horizontal Magnetic Fields

In this section we develop a very simple random source model which will
allow us to calculate the spatial covariance tensor K(x,x"). To make the problem

tractable we assume that the electrical conductivity is 1-d, varying with depth

only. We also assume that at a fixed frequency @ the external source potential on
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the surface z = 0 is a realization of a spatially homogeneous complex random field
¢,. By spatial homogeneity we mean that the statistical properties of the fields are
invariant under translations of the coordinate system (cf. Ripley, 1981). Spatial
homogeneity is thus the random spatial process analogue of the familiar stationar-
ity assumption for time series. This is a strong assumption which can only be
approximately valid for the real earth since the distribution of ionospheric and
magnetospheric current sources is strongly dependent on geomagnetic latitude.
The consequences of this non-homogeneity will be discussed briefly below. For
now we note that this simple model has pedagogic value and that, over spatial
scales of a few hundred kilometers at geomagnetic mid-latitudes, the assumption

of homogeneity may be expected to be at least approximately valid.

Since we have also assumed that the electrical conductivity is 1-d, it is clear
that the statistical properties of the total potential ¢ = ¢, + ¢; defined on the sur-
face z = 0 will also be translationally invariant; thus the total potential ¢ will also
be a spatially homogeneous complex random field. The second moment properties

of ¢ are given by the spatial covariance function
Ko@) = E(O(x)00)") (3.1.1)

where E represents the expectation operator. Note that without loss of geherality
we may assume that E(¢(x)) = O since only the gradients of the potential are phy-
sically meaningful. Note also that homogeneity implies

E(6@)$(x) ) = Ky(x—X)

so K, can be used to compute the covariance between values of the random poten-

tial at any two points.

Assuming this model, let the magnetic ( and perhaps the electric) fields be

observed at n locations x;, i = 1, n, for a series of N independent realizations of

the random external sources. As in Chapter 2 let X, k= 1, N be the fundamental
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frequency domain data vectors for these observations, and form the SDM § as in

(2.4.2). Our goal here, and in the next section, is to show how the expected value
of §

T =E@S)=E(X;X])

can be computed in terms of the spatial covariance function Ky(x) and the wave

number dependent impedance of (2.1.9).

Initially we consider horizontal magnetic fields B, B, only. We will refer to
the SDM constructed from the components B, B, as Sy. Individual realizations of
the fields B, B, can be computed directly as derivatives of the random source
potentials and Zy = E(Sy) can be computed in terms of K, alone. Specifically,

foru,v=ux,ylet

Kut® = E{B,008}0))

Then for any set of station locations x;, i = 1, n the elements of Sy are of the

form X, (x;—X;), and, as we will now show

aZ
K,(x) = - m&u(x) x Wv=xy (3.1.2)

Equation (3.1.2) is most easily derived by Fourier transforming into the
wavenumber domain. In general we will denote the Fourier transform of the c6m~

plex valued function f{x) defined on R2 by f(v)

fv) = [[d*x fix) exp(-ix - v) (3.1.3a)

where v = (vx,vy) is the wave vector. Note that with this definition of the Fourier

transform the inverse transform has the form
Ax) = 2r)2[[d’x fiv) exp(+ix - V) (3.1.3b)

These definitions of the Fourier transform are consistent with the usual convention
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used in the electromagnetic induction literature but they are different from the
convention used in the spectral analysis of stochastic processes; as a result we will
have a few extra factors of 21 in some of the formulae given here. The assump-
tion of stationarity implies that we may write the random potential as the Fourier
transform of a wavenumber domain orthogonal increments process (e.g. Doob,

1953) which, with the Fourier transform defined as in (3.1.3) takes the form

o(x) = (2m)2 [f do(v) exp(iv - x) (3.1.4)

E[d@(v)d?p*(vﬁ] = (2m)? S;,(V)S(v—v')dzvdzv’

where 8 is the (2-dimensional) Dirac delta function and Sy(V) is the spatial power
spectral density of the random potential ¢. With the definitions given here a sim-
ple calculation shows that the power spectrum is just the Fourier transform of the

spatial covariance function Sy = 12'4, as in the time series case.

Then using (3.1.4) and noting

Bu(x)=-£;¢x u,v=xYy

we calculate for 4, v=1x, y
*
9] 9| | -
E ou |x ov |0

E[ [(2;:)4 [f v expGiv - x)d&;(v)] [(21t)‘2 I —ivv’d?b*(\ﬂ] ]

= @m™* f[[fvav/expliv - OE [dfb(\r)d&*(v')]

= @ry 2 [[ vv/exp(v - X)Sy(v)d>v

2 o2
- a—{"v"[@n)'2 JJ Sst)exptiv - x) dz"] = " v o

which establishes (3.1.2).

Remark: We may use the symmetries in the definition of K, (x) to show that

K (%) = K, (=%) (3.1.5)
while (3.‘1.2) implies

K, (x) = K,,(x)
Together (3.1.5) and (3.1.6) imply

K(0) = K(0)

Thus, the assumption of spatial homogeneity implies that K(0) must be real.
Since an estimate of K.(0) can be computed from data at a single station it is
actually possible to prove that the fields aren’t spatially homogeneous from data at

a single station.

To apply this model we must choose a specific form for the spatial covari-
ance function K. This function must be a positive definite function (i.e. the
Fourier transform must be strictly positive; cf. Miller, 1974; Ripely, 1981) to be a
valid spatial covariance. For the calculations described below we have chosen K,

to have the simple form

- 2
Ky(x) = o} exp[—%- ] (3.1.7)
0

In (3.1.7) the parameter G, gives the total amplitude of the potential variations

while ry gives a characteristic correlation length scale for the potentials.

A simple calculation shows for u, v =x, y

2

K (x) = - a—i-a;-K¢(x)|x - %0[8“‘, - %‘él] Ky(X) (3.1.8)

Note that since the magnetic fields are the derivatives of the potential they are
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rougher and have a characteristic correlation length scale somewhat shorter than
ro. As we see from (3.1.8) the correlation of the fields is reduced to zero at a dis-

tance ro/N2.

3.2: A 1-d Random Source Model
Electric and Vertical Magnetic Fields,

We now consider the incorporation of vertical magnetic and horizontal elec-
tric components into our random source model. To do this we use the space
domain impedance filter approach described in Dmitriev and Berdichevsky (1979),
hereafter DB. We will refer to many features of this approach in the sequel. We
will thus outline the key results described in DB. This approach is based on the
observation that for a given conductivity distribution in the region z > O the hor-
izontal magnetic fields on the surface z =0, together with the appropriate boun-
dary condition at z =-co, uniquely determine the magnetic and electric fields for
z> 0. This, together with the linearity of the 'governing eqﬁations, implies that a
linear operator relates the horizontal electric fields on the surface z = 0 to the hor-

izontal magnetic fields on z =0

E(x) = [[ @' Gg(xx)By(x) (3.2.1)

where the 2x2 tensor Gg(x,X") is the kernel of the operator, which depends both
on frequency and the conductivity distribution.

In the special case of 1-d conductivity which we consider here, the kernel

[0 Gy
Ge=lg,, 0

takes the simpler form

where ny satisfies

Gry(X.X) = = G(x.X) = G (x—X',0) = Gg(x—x') (3.2.2)
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The function Gp is called the spatial impedance filter. From (3.2.1) and (3.2.2)

we see that the electric fields can be written as the convolution of the impedance

filter with the horizontal magnetic fields.
Ex = GE * By Ey = GE * Bx (323)

where * denotes convolution, i.e.
fx g = [[ dx fx—x) g(x')

Note that as we have assumed that the atmospheric conductivity is zero so
that no currents flow across the surface z = 0, G is just the inverse spatial Fourier

transform of the usual wavenumber dependent impedance {(®,v) (see DB):
Gi(x) = 2n)? [[d*v{(w.v)exp(v - X)
The exact form of Gg is derived for a half-space of constant conductivity &
in DB. The result is

G _ Tiw exp(ik|ixi])
B0 = o T Il

K=ioc Rek>0 (3.2.4)

Here k = 8(1 + i) where d is the skin depth. We thus see that the impedance filter
‘goes to zero very rapidly beyond distances of a few skin depths. This implies that
the electric fields are locally determined - values of the maghctic fields more than

a few skin depths away will have very little effect on the electric fields.

Note also that the impedance filter for the half-space is radially symmetric.
This will clearly be a general feature of the impedance filters for all 1-d conduc-
tivities (see DB). If the horizontal magnetic fields are expanded in a Taylor’s
series around a point x then the symmetry of the impedance filter implies that the
electric fields at x are sensitive to only the even order terms. In particular, the
local electric fields are not sensitive to linear gradients of the magnetic fields.

This fact was used by DB to demonstrate that, at least for a 1-d earth, the MT
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impedance determined from the ratio of local electric to magnetic fields will be
the correct plane wave impedance even in the presence of large lateral variations
in the sources, provided these variations are linear gradients of the fields. (See
also the discussion in Mareschal, 1986.)

The vertical magnetic fields can also be obtained from the impedance filter

formulation. Since from (2.1.1)

L _i|2p_2
BZ—O)(VXE)Z—CO[axE ayEx]

i | 9 W
=— T’D-[-a-(GE * B,) + -a";(GE * By)] (3.2.5)

We can put (3.2.5) into a more revealing form by using the fact that the order of

convolution and differentiation may be interchanged (e.g. Folland, 1976)

9 I AP ) 4
ox (f*g)_ax*g I ox

Then we may write (3.2.5) as

RIE 3 |
'0—)' [[—a‘-GE] *Bx+ [—a'y'GE‘ *By}

g aB,+aB,“ 526
=T EM T T oy |

From (3.2.5) we see that the vertical fields B, can also be written as a vector
convolution of the horizontal fields. The alternative formula (3.2.6) shows that B,
can be written as a convolution of the scalar field |

oB JB
axx * _5y_y—
Furthermore, (3.2.6) shows that the convolution function is the spatial impedance

filter G times a constant. This gives a neat formal justification for the spatial
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gradient approach (Schmuker, 1970; Kuckes, 1973; Lilley, et al., 1976) to the esti-
mation of the 1-d MT impedance.

With the above results in hand we can calculate the elements of X
corresponding to covariances involving electric and vertical magnetic fields. We
first establish a general result which we subsequently apply. Let f= (f}, f;) be a
complex vector valued spatially homogeneous random field with covariance tensor

K;(x) = E(f(x) £;(0)). Then for any sufficiently regular function G
E[(G * £)(x) j;-*(O)] = (G * K;j)(x) (3.2.7a)
E[f,-(x) (G * fj)*(O)] -G » K)(x) (3.2.7b)
These are established by a simple calculation
E[(G * £)(x) J;*«))] = E[ ] & G&—=) () (O ]

= [ &% G-REFX)(0) = [[ dx'Gx'—x) Ky(x) = (G+K(x)
This establishes (3.2.7a); (3.2.7b) is proved by a similar calculation.
Then consider the calculation of elements of X such as E(E,B,) where
uv=x,J. To present a unified single formula we adopt the convention that &

will denote the index y when u = x and the index x when u =y (and similarly for

V). We also define

e(uy) = {j% ifu=y

Then using (3.2.3) and (3.2.7a) we calculate
E(E (x)B,(0) = E [ e(x,u) (Gg * By)(x) BV(O)] = e(x,u) (Gg = K ))(X)

aZ

Y. (Gg * K¢)Ix (3.2.8)

= E0.u)
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In a similar fashion, using (3.2.7b) in addition, we may calculate the covariances
between two electric components at x and 0 as
o : : (3.2.9)
E(E (X)E,(0)) = e(v,u) —— ((Gg * Gp) * Kp)lx 2.
oiidv
The calculation of covariances involving vertical fields proceeds in a similar
fashion using (3.2.6) and (3.2.7). We find foru=1x,y

i o

E(B,(X)B,(0)") = z <3557 *Kq,)l, (3.2.10)

EB,x)B,0H=3 Y —1—2 28 > (G Gp) *K¢)| (3.2.11)

v

E(B,(X)E,(0)) = e(“g) d ): (Gg * G) *Kq,)l (3.2.12)

aav2

Using (3.1.2) and (3.2.8) - (3.2.12) we can calculate all of the entries in the
matrix Z for any set of station locations x;, i = 1, n. All of these quantities are
calculated as derivatives of the convolution of the spatial impedgnce filter with the

spatial covariance function of the random potential
F=GgxK, F,=(Gg * Gp) x K,
The computation of F; and F, for a specific choice of K, and Gg can be done in

the wavenumber domain using the fact that convolution in the space domain is

replaced by multiplication in the wavenumber domain. Thus, for instance
Fi(v) = GRV) Ky(v) = {(@,V) Sy(V) (3.2.13)

where {(,v) is the usual wave number dependent impedance and Sy(V) is the
power spectrum of the random potential. F; can then be calculated as the inverse

Fourier transform of the right hand side of (3.2.13). If the random potential is
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assumed to be isotropic so that the spatial covariance K is radially symmetric
K¢(x) = Kq,(r) (where r = ||x])), fhen F, 1(V) is also radially symmetric and the cal-
culation of the inverse Fourier transform can then be reduced to the evaluation of
a one-dimensional integral. With a limited amount of experimentation we were not
able to find any (non-trivial) cases which allow for computation of F; and F, in

closed form. We thus turn to methods of approximating these functions.
In general {(w,v) is defined as a function of depth z and satisfies the Ricatti

equation (Rokityanski, 1982)

2

—-C((o V) + —=2 L3 ——Zl(w,v)? = (3.2.19)

with

k = (iopo)” = (1 + i)/8 where § is the skin depth. Setting € = v3, expand the
impedance in the parameter € to obtain an approximation valid when € is small.
Write

L@,v) = o(w) + €6 (@) + Xy (w)+ - - - (3.2.15)

’Substituting (3.2.15) into (3.2.14) and collecting terms in like powers of € we find
that

d )
1 L(w)=0 foriodd

With the boundary condition {(®w,v) — 0 as z — 0 this implies that {;(w) = O for i
odd. Thus we may generally write

§(@,v) = §p(w) + L (0)d%v? +
where {y() is the standard plane wave impedance.

As an explicit example consider the case of a half space of conductivity ©.

Here we have
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—i®

C(o,v) = m

= % (1= V2™ = (@) (1 — vukE )™

11 500, 1301V aca. .
= 1+ =—vo+ —(—) V6" + --- 3.2.16
Go(@) | 1+ 55-v28 + == () v (32.16)
where we have used the Taylor series expansion for (1 - \/Z/kz)‘l"2 and
v2/k? = v28%/2i in the last step. For the half space, then, we can give an explicit

form for the coefficients {{w). Specifically, the first few are

L@ = 5 L@ L@ =- 2 L)

With this series expansion for the wave number dependence of the impedance
we can calculate approximations to the functions F; and F, for the the error func-
tion type spatial covariance function given in (3.1.5). First note that for this
covariance the power spectrum has the similar form

uv||2r%}

Se(v) = nriciexp [— 2

Then we have for F;

Fy) = == [[ & exp(ix - V) Syv) {i Ly ¥ v2f]
4n 0

8% [[ d*v IVI¥ exp(- IIVIFry/4 + ix-v )

= Ky(%) [ Y Coi sz(x)(a/"o)zj] (3.2.17)
j:()
where the terms
Mj(x) = 2_11: [[du llulf exp [— —;- flu - i 2x/r0||2]

will be polynomials of degree j. The first two of even order are
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lxI>
Myx) =1 Myx) =2| 1 - —~
rg
Expansions for F, can be obtained by similar calculations. We find for the

first few terms
Fy(x) = K¢(x) [COCS + 2Re(C0C2)(8/r0)2M2(x) + .- ]

These formulae give explicit expressions for F; and F, as power series in
(8/rg). For natural magnetospheric and ionospheric sources at geomagnetic mid-
latitudes the typical source length scale 7 is-on the order of some thousands of
kilometers (e.g. Porath et al., 1970), while penetration depths & are at most a few
hundreds of kilometers (until periods on the order of days are reached when &
may approach a thousand kilometers). Thus &/rg<1 and the series will converge
very rapidly so that only one or two terms are needed to get a very accurate

approximation.

Keeping only the first term will in fact be valid for most conditions (see dis-
cussion in DB). In this case we see that the convolution operator Gg * reduces
to multiplication by a constant {;. This is equivalent to ignoring the wave number
dependence 6f the impedance, since if the impedance is independent of wave
number the corresponding space domain filter is proportional to a delta function.
In the calculations presented below we have for the most part used the zero order
approximation. We have also done limited calculations with the second order
correction for the case of a half space to verify the validity of the zero order
approximation.

Explicitly then, for the zero order approximation, we have for the vertical
field terms foru = x, y |

1 2
K, (%) = E(B(x)B,(0)) = %"i—f [1 - -'55’-'2'—] Ko(x) (3.2.18)
0 0
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1Co12
K, (x) = E(B,(x)B,(0)) = —E)O_zl_f'

2 4’
[1 T My_] Ko (219)
To

'(2) ro

We can express the electric field covariances in terms of the magnetic field covari-

ances K,,, 4, v =X, y, z which are given above in (3.1.6), (3.2.18) and (3.2.19):
E(E (x)B,) = — e(y,u) ,Co K, (x) U=x,y V=x,yz2 (3.2.20)
E(E (X)E,) = e(u,v) IC0I2 K (%) U, v==x,y (3.2.21)

We can now use (3.1.6) and (3.2.18) - (3.2.21) to calculate X for synthetic arrays.

3.3: Results From Synthetic Arrays I:

Symmetric arrays

We have shown above how to calculate the spatial auto and cross covariance
functions for all combinations of field components (horizontal and vertical mag-
netic and horizontal electric fields) for a 1-d earth subject to spatially homogene-
ous random sources. These spatial covariances can be used to calculate the ele-
ments of the expectation of the SDM E(S) = X for any set of components meas-
ured at any number of sites. We will now apply these results to study the proper-
ties of X for four idealized synthetic arrays. Arrays 1-3 are regular symmetric
arrays with uniform station spacings, while array 4 has a more realistic non-
uniform station spacing. Array one consists of 5 stations laid out in a cross, aﬁay
two is 25 stations in a uniform 5x5 grid, and array three is a linear five station

array. The configurations of the arrays are summarized in figure 3.1.

There are three length scales involved here: rg is the typical source length
scale, 8 is the skin depth of the electromagnetic fields in the earth, and x is the
array size. The properties of T for these synthetic arrays will depend on the two
non-dimensional parameters 8, = 8/rg and xy = x/ro. We are primarily interested

here in the case where 8, xo <« 1. For the initial discussion we consider the
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particular case xp =.1, 8y =.05. We will latter consider the effect of varying
these parameters. Note that we do all calculations for a half space of constant
conductivity. Since we consider only a single fixed frequency this assumption

only effects the relative phases of field components.

Note also that we have assumed that all field components have uniform
uncorrelated measurement errors added. We have rather arbitrarily chosen the
error variance to be .05 % of the typical horizontal magnetic field signal power.
As noted in Chapter 2, the addition of isotropic noise with variance o2 just adds
o2 to all of the eigenvalues; none of the eigenvectors are effected by this. the
addition of this noise serves, in a sense, a cosmetic purpose. With noise added all
of the original noise free eigenvalues which are small compared to 6> appear
equal to the noise level when plotted on a logarithmic scale. The addition of
noise thus obscures structure in the smaller eigenvalues and emphasizes structure
in the larger eigenvalues. There are several reasons why we have done this. First,
with real‘ data there will always be noise, so the addition of noise results in a
model which is at least qualitatively more realistic. In the presence of noise only
the features with power reasonably above background noise levels will be resolv-
able. We thus want to focus attention on the larger eigenvalues and their associ-
ated eigenvectors: these are the features which will be relevant to real data.
Second, as we shall discuss in detail below, the larger eigenvalues have a simple
interpretation which is for the most part independent of the details of the array
configuration (i.e. then number and position of stations). This will not generally
be true for the smaller eigenvalues. Note also that numerical problems begin to
arise when one tries to extract _the smaller eigenvalues.- Given the lack of
relevance of these small eigenvalues to the analysis of real data, we have chosen
to ignore these problems and concentrate our attention on the structure of the

larger eigenvalues. Adding a constant noise term to the diagonal effectively
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accomplishes this. It should, however, be born in mind for the following discus-

sion that there is additional structure in the small eigenvalues.

We first consider the case of the horizontal field SDM Zy = E(Sy) for array
one. The ten ordered eigenvalues 7y, i =1, 10 of Xy are plotted in figure 3.2.
The eigenvalues break into three distinct groups - two dominant eigenvalues v;, Y,
of equal magnitude, three intermediate eigenvalues ¥;, Y4, Y5 Which are roughly
two orders of magnitude smaller than the first two, and five nearly equal small
eigenvalues which are at the assumed noise level. Note that among the intermedi-
ate group, Ys = ¥4 and v3 = 2Y4. The eigenvectors v;, i =1, 5 corresponding to the
five eigenvalues above the noise level ;, i=1,5 are plotted in figure 3.3. The dom-
inant eigenvectors v; and v, correspond to virtually uniform horizontal magnetic
fields which are linearly polarized in the east-west and north-south directions
(ﬁgurés 3.3(a) and 3.3(b)). We note here that there are some very small devia-
tions from complete uniformity; we will discuss this in more detail below when

we consider the denser 25 station array.

Since the vectors v; and v, correspond to nearly uniform sources, the magni-
tude of ¥, and ¥, relative to all of the others eigenvalues indicates that the typical
source fields can be well approximated by uniform plane waves. The remaining
three eigenvectors vi, v4 and vs are essentially a first order correction to this
approximation. Consideration of figure 3.3 shows that these eigenvectors
correspond to linear combinations of gradients in B, and B,. For example, v;
(figure 3.3.c) corresponds to gradients of B, in the x direction and B, in the y
direction. Linear interpolation of the fields plotted in (3.3c-¢) results in three sim-
ple horizontal field functions which correspond to pure linear gradients

g3(x) = ﬁ;‘gﬂ []vc] G312

’Bx(x)‘ y |
8= 70| - L] (3.3.1b)
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Bx
o= 5] - ) a0

The eigenvectors vs, vy, Vs correspond to the functions g, g4, g; measured at the
five sites in the artificial array. As we shall discuss shortly, these functions

represent canonical gradient terms.

First, however, we consider the effect of adding vertical fields to this syn-
thetic array. We plot the ordered eigenvalues from the full 15x15 SDM X in
figure 3.4. The pattern of eigenvalues of X is essentially the same as that seen for
Xy in figure 3.1. The only substantial difference (aside from the existence of five
more eigenvalues at the noise level) occurs for y; which is a roughly a factor of
three larger when the vertical fields are included. The horizontal components of
vy i=1,5 are essentially identical to those displayed in figure 3.3. With the
exception of v3 the vertical components are all nearly zero. For vy the vertical
components are approximately equal and in phase for all five stations in the syn-
thetic array. If the phase of v is chosen so that the horizontal gradient com-
ponents are real then the vertical components have real and imaginary parts which

are equal and of opposite sign (corresponding to a 45 degree phase lag of the vert-

ical fields relative to the horizontal gradients). The magnitudes of the real and

imaginary parts of the B, components are equal to the magnitudes of the four

non-zero B, and B, components of v; (see figure 3.3).

The fact that only v; has non-zero vertical field components can be under-
stood in terms of the horizontal spatial gradient approach to impedance estimation
(Schmuker, 1970; Kuckes, 1973). Recall that this technique is based on the
approximation (see (3.2.6))

oB oB
B, = C(w) [ axx + —a-yl} =C(w) Vy - By (3.3.2)

where C(w), Schmuker’s inductive length scale, is related to the usual 1-d plane




wave impedance {(w) via

Clo) = —5@ io)(‘”)

and V}, denotes the horizontal divergence. A simple calculation shows that the
three linear gradient functions g3, g4 and gs defined in (3.3.1) satisfy
Vi g3=2 Vh-84=0 Vi 8 =0
Thus, given our identification of the horizontal components of the eigenvectors v;
as the pure gradient functions g; measured at the ﬁve sites in the synthetic array, it
is not surprising that only v3 has non-zero B, components.
Furthermore, as we will now show, the complex ratio of the horizontal gra-

dient components to the vertical components of v3 can be used to recover the

impedance {(®). Using the numbering of the stations given in figure 3.1 we res-

cale v so that

, T
v3=10 0 B | x2 0 B, |0 x2 By | -x2 0 B0 -2 st] (3.3.3)

Since x is the total array size (measured in Km, say) the horizontal components of
v; now correspond to gradients of unit magnitude (eg. 1 nT/Km) in B, in the x
direction and B, in the y direction. For these fields we thus have Vy - By =2
(nT/Km). Then, from (3.3.2) we expect that the vertical fields should satisfy
B,; = 2C(w). (Note that with v, scaled as in (3.3.3) the units of B,; are in Km -
the proper units for Schmuker’s C(w).)

We may easily verify that this expectation is satisfied for the actual v3 com-
puted for this synthetic array. We have assumed a half space of constant conduc-

tivity and, since we have chosen 8y = .05, xo = .10 we have & =x/2. Then

C = = o L odh) LR (334)
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Thus we expect B,; = (1-i)x/2 so that v, should be proportional to

00 i-i|101=i]o11=]-101=i]0-1 1~

This is precisely the form of v; described above.

We now turn to array two, the 25 station array on a regular grid. We use the
same parameters as for array one. The array sizes are identical (relative to source
scales and the skin depth) - the array is simply more densely sampled. For this
array we include electric field measurements so the total number of components is
25x5 = 125. The 125 ordered eigenvalues of the SDM are plotted in figure 3.5.
The basic pattern of eigenvalues is identical to that seen for the much smaller 5
station array, with y; =Y, > 13> Y4 =Y¥s» ¥;,j =6, 125. The dominant five
eigenvectors v;, i = 1, 5 also show a similar, but more densely sampled, pattern
for the magnetic fields. We will take advantage of this denser sampling to discuss

some more subtle aspects of the eigenvectors.

The source gradient eigenvectors v, v4 and vs, are shown in figure 3.6 where
both electric and magnetic fields are plotted. The horizontal magnetic fields sam-
pled with the denser station spacing confirms our characterization of v3,v4 and vs
as measurements of the pure gradient functions g;, g;, and g3 at discrete points.
The corresponding electric field vectors are plotted on the right in figure 3.6. At
each station the electric fields are proportional to the magnetic fields at the same
station but are turned 90 degrees counter-clockwise. The electric field components
of these eigenvectors thus also represent gradients (in the electric fields).. The
electric fields are in phase across the array and lead the magnetic fields by 45
degrees (only real parts of the electric fields are plotted in figure 3.6). Since the
electric fields are tangent to the current streamlines at the surface, they are useful |
for visualizing current flows. Note that an equivalent external source current which

will result in these field patterns on the surface will have the same spatial pattern
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with current flowing in the opposite direction.

The third eigenvector vs is distinctly different from v, and vs. For v; the
current flows in concentric circles about the central station. Again, only for this
eigenvector are the vertical field components B, substantially different from zero.
The vertical fields components for v3 are nearly uniform for all 25 stations in the
array. As we have discussed above, the magnitude and phase of these vertical
fields can be related to the horizontal components via the spatial gradient equation
(3.3.2).

The electric fields for v, and vs show current flowing in a family of hyperbo-
las centered at the central station. Note that the field patterns for v, and vs differ
only by a rotation of 45 degrees. Since v, and vs correspond to the degenerate
eigenvalue 7y, = ¥s, they are not uniquely determined. Any linear combination of
'v4 and vs will also be an eigenvector of Z. It is easy to show however, that the
fields for any linear combination v = ¢;v4 +¢,V5 are a rotation of the fields plotted
in figure 3.6, so that this general pattern of fields and current flow is characteristic
of the entire eigenspace. Indeed, any linear combination of the gradient functions

g, and g5 can be written as
¢ [ cos(@)gy(x) + sin@)gs(®) ] = ¢ [SmCHc* 53383?] = cgyx) 335)

for some constant ¢, where
< = [cps(e) —sin(O)] &]
sin(@) cos(0)
is just the coordinate vector x rotated by © degrees. Thus the fields for the linear
combination of (3.3.5) look like those for g, rotated by © degrees. The same

holds for the finite dimensional vectors v, and vs which are just the functions

g4, g5 sampled at discrete points.
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Some properties of the eigenvectors Vi i =1, 5 are clarified by consideration

of a Taylor’s series expansion for the potential function ¢ about the origin

_ 0 _@2 _82 a2 aZ 2
060 = 90) + 310 + 3¢ (0)+x25§<0)+y23;;‘3<0) ”ya%%“” + o

We may then write for the horizontal magnetic field vector

[ﬁ;‘fﬁ} = B,(0) [é} + By(0) [?] (3.3.6)

o[ ).

which upon rearrangement of the linear terms is
B,(x) 1 0
[By(:oJ =50 [ +2,0 )

0B, OB oB oB
N L 9B [,,x] x 9B, x oB
[Bx oy J(O) * [ax dy © [")’] +2 ayx © &] o
The Taylor’s series approximation represents an expansion of the fields in a set of

polynomial basis functions. In the rearranged form of (3.3.6) we see that eigen-

vectors v, i = 1, 5 correspond approximately to the two zero order and three first

order terms, sampled at the station locations. Note also that (3.3.6) demonstrates
that the three gradient functions g, i=1,3 can be used to represent any possible
linear gradient of the horizontal fields.

With the rearranged form of the Taylor’s series in (3.3.6) the coefficients of
the polynomial basis functions have "nice" properties under coordinate transforma-

tions. These coefficients are B, = B,(0) and B, = B(0) for the zero order terms
and '

oB oB oB oB
_9B, 3B, _ 3B, 3B, OB
S R LA
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for the first order terms. The pair (B;, B,), of course, form a vector. The gradient
coefficients B;, i = 3, 5 also have nice transformation properties. The first, B3 is
just the divergence of the horizontal magnetic fields and is thus a scalar, invariant
under coordinate rotations. For (8,4, Bs) we find that changing the coordinate sys-

tem by rotating 6 degrees
, x’] _ [cosB —sine] &]
X=1J) = Lsin® cosd

r pY

B, 9By

-+ =7
[BJ] I R A [cos28 —sin2g | [54} (337)
Bs an aBy' S CcOS 5

| axl ayr

transforms (B4,Bs) to

o

This property of the gradient coefficients has been previously noted by Kuckes et
al. (1985). Our approach is somewhat different, in that these authors used a
spherical harmonic expansion for the potential over a perfect conductor to demon-

strate these transformation properties.

The three gradient terms described above form a natural extension to the
vplane wave source approximation. These gradient terms can be justified in terms
of a Taylor’s series expansion of the total potential, and they arise in a natural
manner when the expected spectral density matrix X is diagonalized. Together
with the plane wave sources, the gradients define a five dimensional space of
external sources. While the correspondence between these ideal source terms and

the eigenvectors v;, i = 1, 5 is very good it is not in general exact.

In figure (3.7) we examine the eigenvector v; from the 25 station array two

more closely. For a north-south linearly polarized plane wave source the ampli-
tudes of the B, and E, field components should be constant (and non-zero); all

other components should be zero. Although, the field components satisfy these
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conditions approximately, there are deviations in all components. For the parame-
ters used in this example ( 8y = .05, xg = .1 ), these deviations are small, having

typical amplitudes of a few tenths of a percent of the total field amplitude.

In figure (3.7a-c) we contour the magnetic field components B,, B, and B,
respectively. For B, the fields are larger in the center of the array, and are smal-
lest in the four corners. Note that the fields are more nearly constant in the y
direction. The other horizontal component B, is nearly zero everywhere as
expected, and is exactly zero on the north-south and east-west lines passing
through the center station. The largest deviations are found in the four corners,
with the contour plots of the fields forming a saddle centered at the origin. The
vertical field components show a linear gradient in the east-west direction with a
zero line going going east-west through the origin.

For perfect plane wave sources, the electric fields should be uniform and they
should point in the east-west direction. The actual electric fields for v; show
small deviations from this ideal form. In figure (3.7d) we plot the vector devia-
tions from the ideal uniform east-west fields. Again these are small - a few tenths

of a percent of the total electric fields. The electric field perturbation vectors plot-

‘ted in figure (3.7d) are tangent to the streamlines of the small electric currents

which produce the magnetic field perturbations. These perturbations to the dom-
inantly uniform currents consist of two current vortices of opposite sign, elongated
in the east west direction. The two vortices together lead to to an enhancement of
the current flow from west to east in the center of the array. These currents are
thus consistent with the observed magnetic field perturbations including the rever-
sal of sign in the vertical component, the enhancement of B, in the region of

enhanced current flow, and the reduction of B, in the region of reversed current.

The other dominant eigenvector v, shows analogous perturbations in all com-

ponents. In addition, the gradient eigenvectors are slightly perturbed from the
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ideal pure gradient terms discussed above.

In our experience perturbations of the plane wave response estimates due to
random measurement errors are usually much larger than a few tenths of a per-

cent. Hence, as long as array sizes are as small (compared to typical source

length scales) as those considered here, the perturbations noted above will not be a A

serious problem. For larger arrays (e.g. large magnetometer arrays such as those
described in Porath and Gough (1971), Lilley et al. (1981) or by The EMSLAB
Group (1987)) the deviations of the eigenvectors from the simple forms described
here will certainly be non-negligible. In such cases the direct interpretation of the
eigenvectors of Z in terms of the simple source morphologies described above will
not be possible. As we will discuss in the next section, however, these eigenvec-

tors are still meaningful - albeit harder to intérpret.

3.4: The Eigenvalues of X as a Spatial Power Spectrum

The basic properties of the eigenvalues and eigenvectors of Z are the same
for the two symmetric arrays arrays considered in section 3.3 - the addition of sta-
tions to form the more densely sampled larger array just revealed finer details. At
least in theory, we can consider the case of sampling at every point in a bounded
region S (e.g. the square region which the 25 station grid covers). Consideration
of random source models in this situation leads to an integral equation eigenvalue
problem which we can relate to a sort of spatial spectral analysis. Before return-
ing to a more detailed discussion of results from our simple model we consider
some qualitative properties of this problem. We thus temporarily drop the réstric-

tive assumptions of the previous sections and allow an arbitrary conductivity dis-

tribution and an arbitrary random source distribution. Although the results given -

here can be plausibly demonstrated with rather simple calculations, formal proofs
of the results are mathematically technical and have not been attempted. We will
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be quite casual; some discussion of the mathematical technicalities required to for-

malize these results can be found, in part, in Adler (1981).

Consider, then, the magnetic and electric fields F(x) restricted to a bounded
region S (note that this could be the entire surface of the earth). We assume that
the external source potentials are given by a sufficiently regular complex valued
stochastic process. Then the fields F(x) will be random vector-valued complex
fields (related to the random potential ¢ via the linear operators, L o, and Lg dis-

cused in section 2.1). Let
K(xx) = E(F®Fx)")

be the spatial cross covariance tensor for the magnetic and electric field com-
ponents. Just as the matrix X defines the second moment properties of the mag-
netic fields measured at a finite number of stations, the function K(x,x") for
x, X’ € § defines the second moment properties of the magnetic fields measured
everywhere in S. The analogue of the matrix eigenvalue problem that we have

considered above is the integral equation eigenvalue problem of (3.0.1).

To make some qualitative statements about this problem we use some stan-

dard mathematical results from the theory of linear operators. Define the operator

K@) = I d*x K(xx)u(x)
5

on the space of square integrable (complex, vector valued) functions defined on §
(i.e. L*S)). Then we have the eigenvalue problem

KW) = w (3.4.1)

Using results summarized, for example, in Folland (1976; pp33-43) it can be

shown that:

(1) K is a compact operator, and will thus have a discrete spectrum with only a

countable number of eigenvalues ¥; (only a finite number of which will have
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magnitude greater than any finite £ > 0).

(2) The set of eigenfunctions v; associated with the eigenvalues y; form a com-

plete orthonormal set so any function f in L3(S) can be expanded

f=z<v,-,i>vi
i

where the inner product is defined in the usual way
<g, > = [ dx g’ (x)f(x)
s

If we apply these results to our random field model we find that the random

electric and magnetic field vector F(x) can be written
F(x) = Z Bivi(x) where B; = <v;, F> (342
i

The coefficients B; are now random variables. Now

E@;B)=E ~!v?(x)l«‘(x) &x | |[Vi)F(x) dx
S

J J ¥i0 EFRQF @) dxdx = xR
§

= :gfdzx vi(®) % vi(x) = Y9y (3.43)

so these random coefficients are uncorrelated and have variances given by the
eigenvalues. The eigenfunction expansion thus gives a representation of the ran-
dom electromagnetic fields as a random sum of discrete uncorrelated (and orthogo-
nal) modes. Note that a calculation similar to that of (3.4.3) shows that all eigen-

values are non-negative (so the operator K is non-negative definite).
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Equation (3.4.2) gives a representation of any function in L*(S) in terms of
the the eigenfunctions vy{(x). Not all functions in L*(S) will correspond to possible
realizations of the fields. Let @ be the linear space containing all realizable exter-
nal potential functions (note that these will be a subspace of the space of all ana-
lytic functions ¢(x,y,z) satisfying ¢ — O as z — +o0). Then as in (2.2.3) and
(2.2.4) the linear operators Ly, and Lg (both of which depend on the electrical
conductivity distribution) determine the space of realizable electromagnetic fields
R (i.e. the response space, which is now of infinite dimension). The vector valued
functions in R are all consistent with the physical laws of electromagnetism in
general, and with the specific distribution of electrical conductivity, o(x,y,z), z 2 0,
in particular.

The distribution of the random fields can be described abstractly in terms of a
probability measure P defined on (some collection of measurable subsets of) L%(S)
(Adler, 1981). Note that since all realizable fields are contained in R we have
P(R) = 1. Then we may write the covariance tensor as an abstract integral over

the space R
K(xx) = E(FOF'(x) ) = [ dP(F) FGOF (x)
R

Then if v(x) is an eigenvalue of K corresponding to a positive (non-zero) eigen-

value we may write

‘v(x) = y! [ dx Kxx)v(x)
s .

= y! [ @ [dPF)FX)F(X) v(x))
M R

= y! [ dP(F)| [ &% F'&)v(x) | F(x) = ¥ [d0,(FF(x)
R S R
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Thus all eigenfunctions corresponding to positive (non-zero) eigenvalues are aver-
ages of elements of R, weighted by the abstract measure Q,, and thus are elements
of R. (A substantial amount of mathematics is required to really prove this; what
we give here is nothing more than a plausibility argument.) This is an irnpo@t
point: all eigenfunctions corresponding to positive eigenvalues of the Spénal
covariance operator K are realizable.

The eigenvalues 7; represent the power in the i'" mode v, They are thus
essentially a spatial power spectrum for the fields restricted to the bounded region
S. If the random fields are approximated by truncating the expansion of (43.2) at
the p* mode, then, on average, the total error (integrated over S) due to this
approximation is i=§+l ¥, It can be shown that this error can be made as small as
desired by choosing p large enough. For arrays which are small compared to typi-
cal source scales, we have seen that a very good approximation is obtained with
p=5. More generally, this argument provides a strong justification for the
response space approach in a very general setting.

Note that when the region is unbounded, the spectrum of the operator K

_becomes continuous. For the case of fields defined on the full plane z=0 with

spatially homogeneous random sources with a 1-d conductivity distribution, the

eigenvalues of K define the usual spatial power spectrum S(v). The corresponding

eigenvectors for this particular case arc
vx
u,(X) =1 vy exp(iv - X)
v,(©)
where v = (V,,Vy) and V;(0) depends on the 1-d impedance G,
For regional arrays where the array size is small compared to typical source

scales, we would argue that for many purposes the discrete spectral problem for a
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bounded region is far more relevant than the usual continuous spectral treatment.
It is clear that as the number of stations increases and as we sample the region S
more densely the finite matrix eigenvalue problem becomes a better and better
discrete approximation to the integral equation eigenvalue problem. The results
obtained above for the 25 station array thus give us some idea of the behavior of
the dominant eigenvectors and eigenvalues of the operator K for the square region
covered by the grid. For scales relevant to regional arrays, we have seen that
almost all of the power lies in a small number of eigenvalues. These eigenvalues
cluster in groups (¥; =Y, = >Y3>Y,=Ys®» - - - ). The dominant five eigenvectors
which we have examined correspond closely to simple, easy to interpret field mor-

phologies - plane wave sources and pure gradients.

Comparison of the 5 and 25 station arrays, shows that the eigenvectors of X
are essentially just the eigenfunctions of the operator K sampled at the station
locations. This will hold only for modes which vary slowly enough over the array
that the effect of spatial aliasing due to sparse sampling is small. All five modes
we consider satisfy this. Nonetheless, as we shall see below, an uneven distribu-

tion of stations will perturb the eigenvectors of X from the simple form described

- above. More generally, the question of how estimates of the discrete spatial spec-

trum described in this section are effected by sampling at a finite set of points is

an important one. Another good problem for future study.

3.5: Non-symmetric Arrays

The two arrays considered in section 3.3 were symmetric - stations- were
evenly spaced on a regular two-dimensional lattice. This fact, together with the
assumed symmetries of the sources and of the electrical conductivity, is responsi-
ble for the regular form of the eigenvalues and eigenvectors. If any of these sym-

metries fail to hold (and in general all will fail for real data) the eigenvalues and




99

eigenvectors will be perturbed somewhat from the form described above.

Array four consists of five stations in an irregular configuration. This array
looks considerably more like a real array than the previous two examples. We
consider only the case of magnetic fields for this array. As above, we assume
values for the non-dimensional parameters of 8y = .05, xo=.1 (although the
definition of xy is not so clear here). The eigenvalues of Xy and X follow the
same basic pattern that we have seen for the two regular arrays considered above.
There are, however, a few subtle differences. Now we find that all eigenvalues

are distinct, satisfying
N=EN>B>NU>Ys>Y, (>3

The first five eigenvectors for the 10x10 matrix Ty are plotted in figure 3.8.
The two dominant eigenvectors v; and v, are, as expected, still essentially con-
stant over the array (the small deviations discussed above occur here als;); they are
of the same magnitude - a few tenths of a percent). The next three eigenvectors
v3, V4, and vs clearly still represent gradients in the horizontal magnetic fields.
The individual eigenvectors, however, are not at all regular and cannot be associ-
ated with a specific simple gradient term of the sort discussed above. Note how-
ever, that v; is similar to the horizontal divergence term which we identified with
vy for the regular arrays, and v,, V5 bear some resemblance to their regular array
counterparts. The situation is similar when we include vertical fields. The eigen-
Vectors Vs, Vg4, and vs for the 15x15 matrix X are plotted in figure 3.9 with the real
and imaginary parts of the vertical components (nearly constant for all five sta-

tions for each eigenvector) printed in the upper left hand comer.

For this irregular array the vertical field components are now non-zero for .

two eigenvectors, v3 and vs. Note that the horizontal components of v5 and vs

change when vertical field components are included in the analysis. Note also that
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the eigenvector v, of X has no vertical component associated with it and that the
horizontal components are identical to the horizontal fields only case (Zg). (It can
be shown that for the isotropic source potential models considered here that (at
least) one eigenvector will always have these properties. This eigenvector will
correspond to the canonical gradient function g4 (or gs) in a particular coordinate

system (which is determined by the station distribution).)

Due to the complications of the gradient eigenvectors the inductive length
scale C(w) cannot be obtained for irregular arrays in the simple direct manner
described above for regular arrays. Nonetheless, it is clear that the phase of the
vertical fields relative to the horizontal gradiénts (45 degree lag) is consistent with

our assumption of a half space of constant conductivity.

To recover C(w) from the eigenvectors, we first note that the three horizontal
field gradient eigenvectors plotted in figure 3.8 are essentially linear combinations
of the canonical gradient functions g3, g4, g5 measured at the five station locations

X;, i=1,5 (with the origin chosen so that the mean station location vector X = 0),

r 3 r 3 . -

X1 Y1 X1
1 X1 -1
u = | . w = | . us = | . | 350D
Xs Ys X5
[ Y5 (%5 ) L5

To demonstrate this we can find the linear combinations of the u; which best fit

the eigenvectors v; in a least squares sense - i.e. we minimize

5
| vi— ZBa || j=3,5
=

The total misfits (with v; normalized to unit magnitude) for the three vectors

obtained from this exercise are 5.25 x10~7, 8.06x10~7 and 2.03x107%, so we see
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that the eigenvectors v;, j = 3, 5 are very nearly linear combinations of the canoni-
cal gradient vectors u;;. We can do the same sort of calculations for the eigenvec-
tors v, V4 ,vs from the full 15 component matrix £ which includes vertical com-
ponents. To be precise (but somewhat casual about notation) let the u;'s now be
the 15-dimensional vectors with horizontal components the same as in (3.5.1) and
with vertical components all zero. If we solve the least> squares minimization

problem

min! || @; - iﬁjuj I i=3,5
=3

we find the linear combinations of the eigenvectors of X whose horizontal com-
ponents are closest to the canonical gradient vectors. Doing this we find that the
vertical components of the vectors #;, i=3,5 are (of course) nearly constant for all
stations. Expressing the station coordinates (used in the definition of the u/s ) in
the non-dimensional units x/r, we find that the vertical components for fiy, 15 are
and that the
=05(1-i)=2C(w) (expressed in the same non-dimensional length). This is

for Q3 are

vertical components

approximately  zero,

essentially the same as the result obtained for the regular arrays (see (3.3.4)).

We thus see that while the eigenvectors of the SDM’s for irregular arrays do
not have the simple regular form seen for regular arrays, the situation is not sub-
stantially different. The first five eigenvectors can still be divided cleanly into two
groups. The first two eigenvectors correspond (approximately) to plane wave
sources, while the next three correspond to gradients in the horizontal fields. The
irregular spacing of stations causes the canonical symmetric array eigenvectors
from each of these two groups to. be mixed together within each group, but, to a
good approximation, not between groups. Put another way, the groups of eigen-
vectors vy, Vo and Vs, V4, Vs span the same spaces for both regular and irregular

arrays. Finally, the canonical eigenvectors, and hence the inductive length scale
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C(w) can be recovered by taking linear combinations of the actual eigenvectors.

These points are not particularly startling, but are important nonetheless since all

real arrays will be irregular.

Array three deviates from the ideal arrays considered initially in a different

fashion. For this array the station spacing is uniform but all stations lie on a line.

This sort of array is often used when a small number of stations are occupied

simultaneously. Many of the actual arrays that we will consider in this thesis

(such as the EMSLAB MT line) take this form. The eigenvalues for the 10x10

SDM for the horizontal fields only Zyg now satisfy v; = ¥, = v3 > ¥4 > v,, i=5,10.

The plane wave source vectors vy, v, are the same as in the previous cases, but

now there are only two gradient eigenvectors v, v, corresponding to gradients of

the field components which are respectively parallel to (B,) and perpendicular to

(B,) the strike of the array.

If we now add vertical fields to the linear array we find that the eigenvalues
of the SDM satisfy ¥; = Y2 > Y3 > ¥4 > Y5 > ¥;, i = 6, 15 so there are again three

gradient terms. There are only two gradient eigenvalues for Xy because gradients

perpendicular to the line (in the x direction) cannot be observed. The unobserv-

oB
able gradients -le are, however, correlated with the vertical components B,.” The
. 0B
effects of the gradients v are thus observed even when the gradients them-

selves are not. Thus, three gradient modes are seen when vertical field com-

ponents-are included in the analysis.

Unfortunately, it is not in general possible to recover the response function
0B, oB

X and —2
o and — are

generally correlated (even for the very simple homogeneous, isotropic source

C(w) from a linear array. This is‘ because the gradient terms

model that we have considered). Both gradient terms result in vertical fields but
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only one is observed and it is not generally possible to determine what portion of
the vertical fields are due to theb unobserved gradients. Estimation of C(w) by the

horizontal spatial gradient technique thus requires 2-dimensional arrays.

3.6: Effect of Varying Parameters

In all of the results presented above we have kept the non-dimensional
parameters 8y and xg fixed. We now consider very briefly the effect of varying
these parameters. For this discussion we consider only the symmetric five station
array, array one. We will consider results for the non-dimensional skin depth &

in the range .01-.1. For source length scales of a few thousands of kilometers,
these correspond to skin depths ranging from tens to hundreds of kilometers.
These values are representative of the skin depths in the real earth for the MT and
MYV data (25 - 10000 s) that we consider in Chapters 2 and 4.

We have shown above that while the dominant two eigenvectors approxi-

mately correspond to plane wave sources there are some small deviations from

complete uniformity of the fields across the synthetic arrays. In figure 3.10 we
plot the fractional root mean square (RMS) misfit between the fields computed
" from the eigenvectors vy, Vo and the uniform ﬁelds expected for perfect plane
wave sources. The fractional misfit is piotted as a function of non-dimensional
array size xg for three values of the non-dimensional skin depth 8o = .1, .03, 01.
For xo < .1 the misfit is on the order of a few tenths of a percent or less for all
three values of 8, and even for xo = .5 the RMS misfit is only 2-3%. With our
model for the spatial covariance of the random potential Ky = 0(2) exp( - ||x“2/r% )

the correlation for the horizontal fields drops to zero for station separations of .7

(in the same non-dimensional units). These results thus indicate that the plane

wave approximation remains reasonable for arrays whose size is a substantial frac-

tion of the typical source field correlation length scales. Note, however that as
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x5 — 1 imati
0 the plane wave source approximation becomes poor very quickly

Note i
also that as 3, increases the plane wave approximation degrades. This

effect is fairly weak however, at least for the limited range of &, considered h
ere.

In figure 3.11 we demonstrate how variations of the parameters &, x, effect
the relative magnitudes of the plane wave and gradient eigenvalues for tl'lrei com-
p.onent (magnetic field only) data. We plot here the ratio y,/y; against the non-
dimensional array size x, for values of the non-dimensional skin depth
.80 =.1,.03, .01 and 0.0. Recall that for the symmetric array that we are considir-
.mg here, half of the horizontal gradient power and all of the vertical field power is
in the third eigenvector. Thus Y3 is the sum of half of the power in the horizontal
gradients and all of the power in the vertical fields that is due to source gradient:
For. 89 = 0.0 the vertical fields are zero. Thus results for this value of §;, arse

::walent to results that would be obtained for the horizontal fields only SDM

In general, the power in the horizontal gradients is controlled by the parame-
ter X, while the power in the vertical fields is controlled by 8p. This is illustrated
by the curve's plotted in in figure 3.11. As Xy — 0O the horizontal gradient power
rapidly decreases. For arrays with Xp = .01 (corresponding to arrays extending
over tens of kilometers at geomagnetic mid-latitudes) the power in the gradients is
0f1 the order of 5x1075 the typical field power. Even for xy =.1 (hundreds of
kilometers) the gradient power is only 1073 of the main signal. The measurement
of gradients in small arrays will thus require very low noise instruments. On the
other hand, for fixed §; as x5 — 0, Y3/Y1 approaches a constant value. | This
corresponds to the fraction of total power which is in the (gradient caused) vertical
fields; this is independent of Xo. For 8 =.1 the power in these vertical fields is
fully a tenth of the typical field values.
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When 8, > x,, most all of the power in Y3 is due to the vertical fields. As
the array size gets small the horizontal gradients vanish, but the gradient effects on
the vertical fields remain constant. Since 7y, ¥s represent power in horizontal gra-
dients only, these eigenvalues will be small for small arrays. Hence as the array
shrinks to a point the three gradient eigenvalues will degenerate to a single eigen-
value. The corresponding eigenvector will have only power in the B, components.
This explains why, for the small arrays which we considered in Chapter 2, there
was generally a single dominant third eigenvalue whose associated eigenvector
could be approximated quite well as vertical source fields with no associated gra-

dients.

3.7: Inhomogeneous Sources; 3-d conductivity

The model we have emphasized in this chapter is highly idealized. We have
made two very restrictive assumptions - that the external sources are spatially
homogeneous and isotropic, and that the conductivity is 1-d, varying only with
depth. While these assumptions are not realistic, thcy result in a tractable model
which reproduces many of the main features of the array data described in Chapter
2. In this section we consider qualitatively the effect of relaxing our restrictive

assumptions.

The assumption of isotropic source fields can easily be generalized. Isotropy
of the covariance of the random source potential implies that the properties of the
random potentials are invariant under rotations of the coordinate system. For real
sources we would éxpect a strong directional dependence of the character of the
signal - the external source currents are strongly controlled by the earths main
field which imposes a fixed preferred direction. Much of the symmetry of the
eigenvectors and eigenvalues of the SDM’s will be lost when this assumption is

dropped. In particular the occurrence of pairs of degenerate eigenvalues
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corresponding to plane wave sources and to the gradient functions g,, g5 depends
on the rotational symmetry of the sources. The effect of anisotropy of the source
potential covariance will be similar to the effect of irregular station spacing - the
eigenvalues and eigenvectors will not have the nice regular forms discussed above
but there will still generally be a pair of plane wave eigenvectors, and a cluster of
three gradient eigenvectors. The spaces spanned by these groups of vectors will
be the same as for the idealized case we have discussed above. Thus in a practi-

cal sense the effect of anisotropy of the random source potential is fairly trivial.

Homogeneity of the source potential covariance implies that the properties of
the random potentials are invariant under translations. An important consequence
of spatial homogeneity is that the gradients of the field components at any point
and the values of the fields at that point are uncorrelated. (If the field component
B, at point x is positively correlated with the gradient of B, in the x direction at
this point, then the B, component a short distance away in the x direction will, on
average, have a larger amplitude, contradicting the translational invariance.) As a
consequence horizontal source field gradients and the (nearly) uniform plane wave
source fields are statistically uncorrelated for homogeneous sources. These two
types of fields thus separate into distinct groups of modes corresponding to distinct
groups of eigenvalues. If, on the other hand, the gradients are correlated w1th the
plane wave sources the gradient and plane wave modes will be mixed in the indi-

vidual eigenvectors.

Of course the real ionospheric and magnetospheric sources do occur in pre-
ferred locations (and at preferred times) so we do not expect the random potential
to be spatially homogeneous even for a 1-d earth. As a reéult we should expect
that the dominant eigenvectors of the SDM for real data will be a mixture of plane
wave and gradient sources and will thus yield a biased estimate of the plane wave

response space. In a sense the problem here is similar to the problem, discussed
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above, of choosing a normal reference station. Now we have a five dimensional
response space R resulting from plane wave and gradient soufces. Regardless of
the correlation of the different types of sources we get the correct answer for R.
We would like, however, to identify the vectors in R which correspond to specific
sources. In general, this identification will require some additional assumptions.
Certainly for a 1-d earth where the general form of the plane wave and gradient
terms is known, the identification of these terms is simple (if uninteresting). More
generally, assuming that the plane wave and gradient terms are "nearly” of the
form expected for a 1-d earth the identification may be possible. For larger arrays
the fields associated with the vectors in the response space may be separated into
internal and external parts (Porath et al.,1970; Richmond and Baumjohann; 1983)
to help separate plane wave and gradient terms. This problem needs further study

and is beyond the scope of this thesis.

In Appendix A we show that the fractional bias in the plane wave response
space due to the correlation of plane wave and gradient source terms is of the
order b = Iplo,/c, where p is the (complex) correlation between the two source
terms, and where cg, 0',2, give the power in the gradient and plane wave source

- terms respectively. Approximating G,/c, by (73/71)% and referring to figure 3.11
for estimates of Ys/y;, we can get a feel for how large these biases may be.' For
horizontal fields in an array of (non-dimensional) size xo = .1 we use the curve
8y = .00 and find b = .05 Ipl. In this case then, the bias will be small unless the
correlation is very high (close to one). For the vertical fields, however, the situa-
tion may be much worse. With 8y = .1 (corresponding to skin depths of some
hundreds of kilometers) we find b = .3Ipl. Unless Ip! is fairly small this bias may
be quite large. A detailed analysié of the importance of this effect for real data
will not be attempted here, but we offer some general comments based on our

experience with small arrays at geomagnetic mid latitudes. Although it is difficult
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to be sure that estimates are or aren’t biased, we find no evidence for consistent
gradient related biases in the horizontal field components estimated for small
arrays (c.f. figures 5.2 and 5.3 in Chapter 5). For vertical fields, on the other
hand, biases due to correlations between plane wave and gradient components do
appear to be a problem sometimes. Based upon our experience with single station
vertical field transfer function estimation (Egbert and Booker, 1986) we believe
that the correlation problem is probably mostly due to a few isolated high power
events associated with geomagnetic storms. It should thus be possible to minimize

these effects with robust versions of the statistical methods presented in Chapter 4.

The symmetries in the eigenvectors and eigenvalues for our synthetic arrays
are also highly dependent on the assumption that the conductivity is 1-d. For the
general case, where conductivity varies in two or three dimensions the eigenvec-
tors of the SDM will be perturbed from the simple forms described above.
Indeed, it is these perturbations from the 1-d form that are geologically interesting.
The exact computation of the statistical properties of the electromagnetic fields
induced in a 3-d earth by randomly varying finite wavenumber sources would be

an extraordinarily difficult problem. We restrict ourselves here to the qualitative

. discussion of a few main points.

Although the 1-d conductivity model is little more than a caricature of the
real earth the main results derived from this simple model are still very relevant to
the true situation. Most importantly, we have seen that the external source fields
can be very well-approximated as linear combinations of two (approximately)
plane wave source terms and three gradient terms (the eigenvectors actually give
the total fields but for a 1-d earth the external fields can be easily inferred from
the total fields). This property of 'the sources does not depend in any way on the
conductivity distribution in the earth. We may thus conclude that for a small

array (i.e. xo <« 1) the finite dimensional response space model of Chapter 2 is
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applicable. For small arrays, the source space @ will still be of low dimension
(p =2 or p =5 depending on whether gradient terms are included) and will still
consist of source fields with simple, large scale, morphologies. Note that this is
true even though the total fields may have small spatial scale variations caused by
internal currents.

There will in fact be some mixing of the plane wave and gradient eigenvec-
tors (as for the case of inhomogeneous sources) but we show in Appendix A that
this effect will typically be very small (again the effect will be most severe for the
vertical field components). In general, the fields associated with the dominant two
eigenvalues will correspond to the plane wave sources, and those associated with
the next three will represent the gradient terms. Furthermore, it is usually the case
(for the horizontal magnetic fields at least) that the total fields due to a plane wave
or gradient source are only perturbed a relatively small amount from the form
expected for a 1-d earth. It will thus be possible to identify, at least approxi-

mately, vectors in the response space with specific source fields.

While many features of the spectral representation of the SDM for the gen-

eral 3-d conductivity case will be the same as for the simple 1-d case that we have

- discussed in detail above, there will often be somé significant differences. Particu-
larly significant deviations from the simple picture painted above may occur for

the electric field components of the eigenvectors. The electric fields may be

severely distorted by small scale local conductivity gradients. The locally dis-

torted electric fields at station i can be expressed in terms of of the undistorted

electric fields E(x) via E(x;) = DE(x;) where for low enough frequencies the 2x2

matrix D; is real and independent of frequency (Larsen, 1977; Zhang et al., 1987).

This local surface distortion can lead to significant variations in the amplitudes of -

the electric field components of the plane wave source eigenvectors (see figure 24

for example). The same effect should be expected for the electric field
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components of the gradient eigenvectors. In fact, for truly local distortion, the dis-
torted electric field components of the gradient eigenvectors should be related to

the undistorted electric field gradients by the same distortion matrix D;.

There are some other effects which may occur in the electric field com-
ponents of the gradient eigenvectors. In the 1-d case, the gradients in the mag-
netic fields produce identical gradients in the electric fields (with the electric field
components rotated by 90 degrees and shifted in phase; see figure 3.7). In fact,
the electric field components of the gradient eigenvectors at any site are related to
the magnetic field components at the same site by the standard plane wave 1-d
impedance - e.g Ey = {()B,. In general the electric fields can be written (DB;
see also (3.2.1))

i |
E(x) = 21 [[d*X'G o (x—X' X)B,(X) U V=2xY (3.7.1)

The electric fields are thus determined by a weighted local average of the horizon-
tal magnetic fields (where the ‘weighting functions’ are the kemels of the
impedance operator). For the 1-d case the kernels depend only on x-x" and are
rotationally symmetric; see (3.2.4). As a result of this symmetry the electric fields
are insensitive to local gradients. When the horizontal fields are linear combina-
tions of uniform plane wave fields and gradient fields the electric fields at any
point are always linearly related via the plane wave impedance {(w) to the local
value of the magnetic fields. Thus for the small arrays we consider here, the
dependence of the impedance on wavenumber can be completely neglected; there
are no finite wave number source effects in the electric fields (as there are in the

vertical magnetic fields).
The situation may be quite different when the conductivity is not 1-d. The |
kernels G, (x—X’,x), 4, v =x, y of the integral impedance operator of (3.7.1) will

still be centered at x but they will now depend on x and they will not generally be
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rotationally symmetric about this point. As a result, the electric fields will not Synthetic Arca v

necessarily be insensitive to gradients in the magnetic fields. In this case there array | ' Arrag 2

may be source effects analogous to that seen for the vertical magnetic fields. For (a) 2. B ° v e
instance, if the shape of the kernels G,,(x—X'X), 4, v =x, y (determined by the e e e .
dependence on x—X’) varies slowly as a function of x, the perturbation of the elec- 5 . —] . . 3
tric fields due to the asymmetry of the kernels will be nearly constant and in phase ;
across the array (but note that the fields will generally be statically distorted as o 4 : S

well). In Chapter 4 we will demonstrate with the EMSLAB data that such situa- . . . . .

tions do indeed occur; there can be significant first order source related effects in

, ‘ r\ 3

electric field data. | array ]
f (©

The situation with gradient related vertical fields is somewhat similar. With

1-d conductivity all vertical fields are correlated with a single gradient function,

g;. This is dependent on the symmetries inherent in the 1-d problem. In the gen-

eral case there can be vertical fields correlated with all gradients. We will also ey G
demonstrate this with some 3 component MV data in Chapter 4. There are many )

other ways in which the interaction of finite wave-number sources and 3-d con-
ductivity distributions will result in deviations from the results obtained from the
simple 1-d model. We will see evidence of some of these when we consider some

specific arrays in ‘more detail in Chapter 4.

Figure 3.1 Summary of synthetic arrays:
(a) Array 1 - five stations in a cross
(b) Array 2 - 25 stations in a regular grid
(c) Array 3 - five stations in a straight line
(d) Array 4 - five stations in an irregular array
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Figure 3.2 Ordered eigenvalues for Ty - array 1 with xo = .1. There.qe three
distinct clusters of eigenvalues: ¥; =Yz Y3 > Y4 = Y5, and the remaining five

eigenvalues at the noise level.
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FIGENVECTORS - ARRAY 1
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Figure 3.3 Five dominant eigenvectors v;, i = 1, 5 for Zy - array 1 with x5 = .1
The eigenvectors v, and v, (a,b) correspond to nearly uniform source ﬁelas.
hne:arly polarized in the north-south and east-west directions respectively
while v3, v4 and vs (c-e) correspond to gradients in the fields. ’




ETGENVALUES
SYNTHETIC ARRAY 1

1|O
Ordered Elgemvalueg

Figure 3.4 Ordered eigenvalues for X - array 1, with horizontal and vertical mag-

netic fields included. Here xo = .1 and Og = 05 The basic patte:mf is as h;n
figure 3.2. The only difference is in Y3 which is larger by'a factor o -ro.ug thy
three. For a 1-d earth most all of the power in the vertical fields is 1n the

third eigenvector.
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Figure 3.5 Ordered eigenvalues for X - array 2, five component data with xg = .1
and 3y = .05. The pattern of eigenvalues is identical to that seen for the
_ smaller arrays.




Figure 3.6 Magnetic and electric co
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mponents for the three source gradient

eigenvectors - array 2, five component data. The pattern of magnetic
fields is as in figure 3.3 but the fields are sampled on a denser grid. The
electric fields are tangent to streamlines of electric current flow in the
earth. Note that in all cases the relative magnitudes of the electric field
vectors are proportional to the magnetic field vectors at the same station,

and that the electric field vectors are rotated 90 degrees counter-clockwise.

The electric field components of these eigenvectors thus also represent
gradients (in the electric fields). These three eigenvectors represent a set
ent from

of canonical field gradients. The eigenvector V3 is distinctly differ
v4 and vs, with the current streamlines forming a series of concentric cir-
cles about the central station. Vertical field components are non-zero only
for this eigenvector. The latter two eigenvectors correspond to the degen-
erate eigenvalue Y4 =75 and vs is just v4 rotated by 45 degrees.
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Figure 3.7 More detailed plot of eigenvector vy for array 2. In figures 3.7(a), (b)
and (c) the north (B,), east (By) and vertical (B,) components of the fields for
v, are plotted. The polarization is approximately north-south; There are,
however some small perturbations (roughly .3 %) to the quasi-uniform
north-south fields. To a good approximation the electric fields are uniform
and point in the east-west direction. In 3.7(d) the deviations of the electric
fields from a uniform east-west field are plotted. These are again on the
order of .3% of the dominantly uniform fields. The fields correspond to two
current vortices which result in an enhancement of the dominantly east-west Fi . : , _
current flow in the center of the array and a reduction of this current at the gure 3.8 Eigenvectors v, =1, 5 for Ty - irrcgular amay 4. Figures 3.8(a)

and (b) give pl :
top and bottom of the array. eigenvocirs p zlnt; wave source eigenvectors; 3.8(c)-(¢) give gradient source
. ough the eigenvectors do not have the simple symmetric

form seen with regul
ar arrays, the two : .
to the two types of sources. . clusters of eigenvalues still correspond
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ARRAY 4 - with Z
v3 7 = .189(1-1)

J

vh + Z = 000

X

VS ¢ Z = -.064(1-1)

e
o )

\

e

Figure 3.9 Gradient eigenvectors v;, i = 3, 5 for X - irregular array 4. The real
and imaginary parts of the vertical fields are given at the top center of each
figure. Note that unlike the symmetric arrays the vertical fields are non-zero
for more than one eigenvector, and that the horizontal field components of
the eigenvectors depend on whether vertical fields are included or not. (See
figure 3.3.8). Note that by taking linear combinations of these eigenvectors
the canonical eigenvectors may be recovered.
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Figure 3.10 Fractional RMS deviation of v, v, from uniform source model for
varying values of xy and 8y Solid line, 8 = .1, dashed line & = .03, dotted
line 8 = .01. The fit remains reasonable until the array size is nearly equal to
the source wavelength.
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Chapter 4

Statistical Theory: Modeling and Parameter Estimation

In Chapter 2 we showed that when the external source potentials were res-
tricted to a p dimensional space ® that the idealized, noise free, data vectors, con-
sisting of Fourier transformed magnetic and electric field components measured at
a finite number 6f sites, would lie in a finite dimensional space R, the response
space. In Chapter 3 we demonstrated that for sources varying randomly in space
the external sources could be well approximated as linear combinations of a small
number of fundamental modes. This result justifies the use of the response space
formulation. In the particular case of interest to us here, where the array size is
small compared to typical source dimensions, we have seen that the fields can be
well approximated by plane wave sources of two polarizations ( p = 2) and that
this approximation can be improved by adding three terms representing pure gra-
dients of the source fields (p = 5).

In Chapter 2 we heuristically justified the use of the dominant eigenvectors of

the SDM to estimate the response space. In this chapter we give a more rigorous

statistical treatment of the parameter estimation problem. Let X, denote the fun-

damental m-dimensional complex data vector consisting of Fourier coefficients
from the k** data segment for all m measured channels of data. If we assume that
the external sources are elements of the finite dimensional space ®, and we allow

for noise in all channels, our statistical model for X, is
Xk= bk+ek= f: ajku]'+ek k=1,N (4.0.1a)
1

The vectors u,j=1,pin (4.1.0a) represent the fields seen at the n stations in the
array for the j* source basis function ¢; the complex numbers
U, j=1,pk=1,N are the coefficients of the basis functions which define the

source ‘polarization’ for the k¥* time window (these give the usual source
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polarization for the plane wave source case with p = 2), and ey is the the error or

noise vector for the K* time window. In matrix notation we will write

Xk = Uak + € (401b)

for a single data vector or

ZE=Ua +E (4.0.1c)
. . . th
for all of the data. Here E is the mxN data matrix, U is the mxp matnx whose j*

. . h . . .
column is u;, E is the error matrix (whose K column is ey) and @ 1s the matrix of

polarization parameters (whose & column is OLy).

This sort of model has been applied to geomagnetic data analysis by Jupp
(1978) and Park and Chave (1984). Both of these papers considered the use of a
model with measurement noise in all channels for estimating the magnetotelluric
impedance tensor for single station data. As another geophysical application,

Backus er al. (1981) developed a similar model and applied it to the problem of

the driving forces of plate motions. .
More generally, models of the form (4.0.1) for real valued data vectors X;
have been extensively described in the statistical, psychometric, and econometric

literature. These have been referred to under a number of names including linear

functional equation models (Sprent, 1966; Gleser and Watson, 1973), structural

relationship models (Moran, 1958), factor analysis models (Thurstone, 1947;
Anderson and Rubin, 1956; Morrison, 1967) and multivariate errors-in-variables
models (Gleser, 1981). Anderson (1984) gives a thorough review of all of these

(and other similar) models. Although these models all can be expressed in the

general form of (4.0.1), they differ from each other in two principal ways. Most.

importantly, these models make different assumptions about the matrix of ‘polari-

sation’ coefficients o Specifically, for the linear functional equation and MEV

v 1 i eters,
models the coefficients o’s are treated as fixed but unknown nuisance param
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while in the structural relationship and factor analysis models the oyy's are treated
as random variables. Gleser (1983) discusses the distinctions between these two
approaches and points out a large number of very close parallels. Although there
are some important differences between these approaches which effect properties
of maximum likelihood estimators (Anderson and Rubin, 1956; Mak and Chan,
1982) and various technical aspects of the large sample theory, for most practical
purposes the distinctions are not particularly important. As Gleser (1982) points

out, results for one sort of model correspond to a parallel (if not identical) result

in the other.

In this chapter we will use results which have been obtained for both sorts of

. models. For most purposes it will be more convenient to treat the polarization

parameters as random vectors. This assumption is consistent with the random
source model of Chapter 3. Furthermore, with this point of view, and with the
assumption of joint multivariate Gaussian distributions for the polarization vectors
o, and the error vectors ey, the sample SDM S will have a complex Wishart dis-
tribution (Goodman, 1962; Brillinger, 1981). Many standard results from the
theory of multivariate statistical analysis are available for the real analogue of this
distribution; these can generally be easily adapted to the complex case considered
here (Brillinger, 1981). At the same time, however, there are some nice results
available on the asymptotic properties of the estimates for the case where the d;k’s
are treated as fixed parameters (Gleser, 1981). For our discussion of these results,
then, we will adopt this alternative point of view. In fact, the results given in
Gleser (1983) can be used to translate asymptotic results from one sort of model
to analogous results for the other. Thus for instance, the large sample results of
Gleser (1981) for the case of fixed (non-random) polarization parameters discussed
in section 4.1, can be applied to the case of random ajk’s if certain technical con-

ditions are restated slightly. In practice then, the inconsistency in our point of
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view does not present any serious problems.

The other distinction between the various models relates to the way in which
the parameters are specified. As we have discussed in Chapter 2, the model of
(4.0.1) is over parametrized. In order to uniquely identify the vectors u; it is
necessary to make some additional assumptions. The nature of these identifiability
assumptions varies for the different model types. As we have discussed above,
the restrictions imposed to uniquely identify the vectors u; do not effect the
response plane R. From the standpoint of estimating R these distinctions are thus
not important. Anderson and Rubin (1956) and Anderson (1984) discuss a
number of ways to guarantee the unique identification of the model parameters.
We have proposed one of these methods in Chapter 2 - i.e. requiring that the
matrix of parameters U satisfy the constraints WU = C. The ‘normal station’ type

constraint is a special case of this which specifies that U have the form

at

With this method of identification the statistical model is a multivariate errors-in-
variables (MEV) model of the sort discussed by Gleser (1981, 1983). We will use
this identifiability assumption for most purposes in this chapter, although here

again, we will consider variants on this specific model at times.

Initially, then, we will discuss estimation for the MEV model in the standard
case in which the error covariance has the isotropic form Zy = E(eep) = 0°L,.
We will generalize this first to the case where the form of the error covariance Xy
is arbitrary but known and then to the case where Ty is unknown. For this last
case we will see that we must assume a parametric form for Zy which allows for
unique parameter identification. We will discuss in particular the case where Zy

can be written as a linear combination of known matrices (with unknown

coefficients), and we will describe a scheme which we have implemented for
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estimating the parameters of this model.

The finite-dimensional response space model can only be approximately
correct. Any deviation from this approximation must be included in the error vec-
tor in (4.0.1). In particular, if we assume a plane wave source model (p = 2) the
gradient terms would be part of the noise. Although these gradient terms are
clearly signal, there are situations in which it will be more reasonable to treat
them as noise. For small arrays the horizontal field gradients will be small - the
power in these gradients may not be substantially above the background system
noise levels (although the vertical field components of the gradient vectors may
still be large). In this case the estimation of the gradient vectors of the response
space is difficult and of questionable value. Furthermore, when the array is
approximately a straight line the meaningful estimation of the gradient response
vectors is, as noted above, impossible. In these cases it will probably be best to
treat the gradients as noise. Using the results from Chapter 3, we will show that
when these gradient terms are treated as noise that the resulting error covariance
matrix can be written approximately as a linear combination of known matrices so
that our parameter estimation scheme is applicable to this situation. We will
demonstrate this approach with data from the EMSLAB MT line and from the

series of 5 station MV arrays described in Chapter 2.

The primary goal of this chapter is to develop statistical parameter estimation
and inference procedures for the model of (4.0.1) that are relevant to geomagnetic
array data. We will see, however, that to accomplish this we will require a
specific, and fairly detailed, model for the structure in the noise (including gra-
dient related source effects on vertical magnetic and electric fields). Finding a
reasonable model for the noise requires careful exploratory data analysis (coupled
with an analysis of the physics involved). This chapter develops some general

concepts and statistical tools which are useful both for formal statistical inference
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and for exploratory purposes. Many of the applications described at the end of
this chapter are of an exploratory nature, and it would be fair to say that many of
these results, particularly for the MT case, are still quite tentative. Additional
work will be required to decide on the ‘definitive yet practical’ model for a fnul-
tivariate analysis of geomagnetic array data.

Finally, we note that many of the statistical methods described below have
been described in the statistical literature for the case of real data vectors X,. All
of our applications involve complex data vectors. In general the extension of the
results for the real case to the complex case are straightforward; as a result we
will generally site the relevant results from the real case as justification for our
methods without offering an explicit proof that the result still holds for the com-
plex case. We have attempted to verify the validity of the extension in all
relevant cases, and have made necessary small modifications. The complex mul-
tivariate normal distribution, which we will use on occasion in this discussion, is
described in Goodman (1962) and in Giri (1977); many applications of this distri-
bution, mostly in a time series context, are described in Brillinger (1981). Since

these results are fairly standard we will use them freely without reference.

4.1: Parameter Estimation for the MEV Model

We first consider the estimation of the parameters of the MEV model
- = Ip
E=|s |=Ua+E= T a+E 4.1.1)
=2

where the error vectors e; (i.e. the columns of E) are independent identically dis-
tributed random vectors with covariance E(eg]) = 62, and where @ is a fixed
(non-random) matrix. The unknown parameters in this problem are the elements
of the complex matrices T and O and the error variance 62. The elements of &

are nuisance parameters; it is the matrix T which we are really interested in
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estimating. Our treatment of this problem closely follows Gleser (1981) who con-

sidered (4.1.1) for real (i.e. not complex) parameters.

There are three criteria which have been proposed to justify estimates for this
problem. The first, the ordinary least squares estimate (LSE), is based on minimi-

zation of the norm of the matrix of residuals
| RT.aB || = || E-Tal| (4.1.2)

where the matrix norm |||| is defined by || A " = (Tr[AA™])*. The second, pro-
posed by Sprent (1966) is the generalized least squares estimate (GLSE) based on

minimization of the norm of the normalized residual matrix

Il o@:E) || = || @y + TTHAE, - TED || (4.1.3)

The third criterion, maximum likelihood estimation (MLE) assumes that the errors
are Gaussian and maximizes the likelihood function, which for complex Gaussian

errors can be written (Goodman, 1962)

L(T,0,0%,E) = 2no?)™Nm exp{ - lz || R(T,0E) || } (4.1.4)
, 8)

Gleser proves that the estimates of T obtained from all three of these criteria
are identical. These proofs generalize readily to the complex parameter case con-
sidered here. The estimates are also identical to those suggested heuristically in
Chapter 2. These can be given explicitly in terms of the eigenvectors of

——

S =~1EE". Let V be the matrix whose i column is the eigenvector v; associ-

ated with the i largest eigenvalue of S and partition V as

Vi Viof -
V= [Vzl . where V;; is pxp

Then the estimate of T is

T =V, Vil (4.1.5)
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To discuss the computation of estimation errors we use the expression for X,

given in (4.0.1b) and expand the cross power matrix for the k* data vector
XX} = Uo,ajU* + Uayel + e 0 U" + ece} 4.1.6)
Set
Z, = e, — 021, + Uoye; + e, 0 U (4.1.7)
Then, substituting (4.1.7) into (4.1.6), and noting that E(Z,) = 0 we have
X.X; = [ U oU* + 04, ] + Z, = EXX}) + Z; (4.1.8)

We may thus write for the SDM
» N * * x N
S=N1Y X X; = Unloa' U + 620, + N1 Z; (4.1.9)
k=1 ' k=1

=ES)+Z=Z+1Z

As we have discussed in Chapter 2, the p dominant eigenvectors of X = E(S)
determine the response space (and hence T) exactly. The | SDM S is perturbed
from its expected value X by the random matrix Z. As a result, the eigenvectors

of S, and thus the estimate T, will be randomly perturbed from the true parameters
| T. The magnitude of these perturbations determines the estimation errors. Equa-
tion (4.1.9) gives an exact expression for S in terms of model parameters and the
error vectors €;. The relation between the error vectors e and the perturbationslto
X is very simple and, at least in some cases (e.g. Gaussian errors) it will be possi-
ble to give an explicit (albeit complicated) expression for the exact distribution of
S (for Gaussian errors S will have a non-central complex Wishart distribut_ion (e.g.
Brillinger, 1981)). The estimates ’i‘}, on the other hand,' are non-linear functions of
S so the computation of the exact distribution of T will be impossible in practice.

We must then turn to approximate methods.
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The standard statistical approach to this approximation is to compute the
asymptotic properties of T in the limit as the sample size N — . We give a
qualitative outline of the idea behind this approach. In the case at hand we note
that Z, the perturbation to X, is the average of N independent (but not identically
distributed) random matrices, Z;. Since E(Z;) = 0 we would expect that as N gets
large and we average over more and more terms that Z should converge to zero.
More importantly, we may invoke (some version of) the central limit theorem
(CLT) to demonstrate that NAZ converges to a random matrix G whose elements
are jointly Gaussian with zero means. The best known standard CLT requires
independent identically distributed random variables (e.g. Lamperitti, 1966) but
there are many variants of the CLT which relax some or all of these requirements
(Gnedenko and Kolmogorov, 1967). In particular with sufficient regularity it is

shown in Gleser (1981) that for the situation considered here, for N large we have
S=Z+N"%G + ONW1)
where the elements of G are jointly Gaussian.

For the second step of this asymptotic approach we note that since S differs
from X by a small perturbation, we may linearize the relationship between T and
S so that we can write N4(T - T) (approximately) as a linear function of the per-
turbation G. It then follows easily that the elements of N4(T — T) are approxi-
mately jointly Gaussian with zero mean and covariances which can be easily com-
puted from the linearization in terms of the covariances of the elements of G.

Note that other approximate approaches are possible. Backus et al. (1981)

and Park and Chave (1984) also used a perturbation approach to compute approxi-

mate estimation errors in their applications of this model. In these papers the .

authors expanded S as in (4.1.9)

S = ~![ Uaa'U* + (UGE® + Ea'U") + EE* ] = ¥I[ Uaa'U* + G, + 6°G, ]
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where o2 is here the noise power normalized by the signal power. Assuming
o<l, they then used a perturbation expansion in the small parameter ¢ to write
the perturbations to the eigenvectors of X approximately as linear combinations of
the elements of the error vectors. In a sense the main difference between this
approach and the standard asymptotic approach used in statistics lies in the choice
of the small parameter used for the perturbation expansion. Although the standard
asymptotic statistical theory can be more rigorously justified, there are certainly
circumstance (i.e. when N~ % is not small but ¢ is) where this alternative approach
will be preferable. This is certainly the case for the problem considered in
Backus et al. (1981), but probably not for the MT impedance tensor estimation
problem considered by Park and Chave (1984).

Gleser (1981) discusses the large sample properties (asymptotics) of the MEV
estimate, using the approach outlined above. To prove any results about the large
sample properties of the estimates T we must assume that the nuisance parameters
QL are well behaved as N — oo, Speciﬁcally we require the existence of the limit

lim Mo’ = I,
N—oo

and we require that %, be non-singular. The matrix I, gives the limiting second
moments of the source polarization parameters - i.e. it gives the long term avérage
distribution of power in the different possible source polarizations. The assump-
tions required for ‘nice’ large sample properties are thus quite reasonable - as
more and more data are collected the average properties of the sources must settle
down to a long term average, and all possible source polarizations which we have
included in the model must have finite power (on average).

With these assumptions Gleser' proves that the estimates of T given in (4.1.5)
are strongly consistent, satisfying T®™ 5 T with probability one; ie. as N gets

large the estimate for sample size N, T, always gets closer and closer to the true
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parameter T. Following the procedure outlined above, Gleser also shows that pro-
vided the fourth moments of the error vectors e, exist, the estimates T are asymp-
totically normal (i.e. the joint distribution of the elements of (T — T) converges
to a multivariate Gaussian distribution as N — «.) There are some differences
between the complex case and the real case treated by Gleser, but the final result
is the same. Because of the differences for the complex case we outline Gleser’s

proof and indicate the modifications needed in Appendix B.

The exact form of the asymptotic covariance depends on third and fourth
moments of the error distribution. These are not known and they would be
difficult to estimate. To obtain useful expressions for the asymptotic covariance
we must therefore assume that the errors are Gaussian (more precisely we must
assume that all moments up to the fourth moments are the same as those for some
multivariate Gaussian distribution). Note that if the noise process is stationary
then the frequency domain noise vectors e, will be (approximately) Gaussian.
This will not always be true, particularly if deviations from a plane wave source
model are included in the noise (Egbert and Booker, 1986). It is probable that the
error estimates given here will be optimistic unless a robust variant of the basic
MEYV estimate described here is used. With this caveat, the asymptotic covari-

ances of the ij and i’j’ elements of T are given by
Cov(T;, Ty )= (4.1.10)
1 291 *
N lg? [GZQ(IP+TT)2;1+Z;1]JT [1,,,_,,+TT*]ﬁ,

To compute these estimation errors the error variance 62 and the matrix X,
must be estimated. Consistent estimates of these quantities are given in Gleser;

these results remain applicable to the complex case considered here. As in (4.1.5),

~ partition the matrix eigenvectors V to obtain the pxp and (m-p)xp matrices Vi,

and V,. Let v;i=l,m be the ordered eigenvalues of S and set
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D = diag(y;, - * - ,Yp). Then we estimate the desired quantities by
= N—I[VHDVI1 - &'V, Vi ] (4.1.11a)
o= Ty, (4.1.11b)
m=P i=p+1

Together, the results given in (4.1.10) and (4.1.11) allow us to compute estimation

errors of any linear combination of the parameters T.

4.2: Estimation with a General, Known Error Covariance Matrix

We now consider the estimation of the response space R for the general case
where the noise covariance Xy is not isotropic. In contrast to the previous section
where we assumed the MEV model to uniquely identify the parameters which
represent the response space, we here represent the response space as the projec-
tion matrix Pg which projects C™ onto R. As we have already indicated in section
2.4, the eigenvector estimate of the response space R of (2.4.7) will generally be
biased, yielding incorrect answers even for an infinite amount of data. We first
give an explicit form for this bias.

To do this we express the total expected covariance as the sum of signal and
noise parts E(S) =X =Zg+ Zy. We will assume that the signal matrix Xg is in
some sense large relative to the noise matrix Xy and use a perturbation approach.
This perturbation technique can also be used for the direct computation of csﬁma—
tion errors as we will discuss later. Note that this perturbation technique is similar
to that used by Backus et al. (1981) and Park and Chave (1984) to calculate esti-

mation errors for the model of (4.0.1).
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Watson (1983) used results from Kato (1966) to give a treatment for this
problem which is at once elegant, mathematically rigorous and clear. We will
base our discussion here on a generalization to the case of complex matrices of
the formulation and results given in Watson. We give a general statement of the

setup and the key result since we will use this result several times in the sequel.

Let Ty and T be mxm complex Hermetian matrices and set
T(e) = Ty + €T, (4.2.1)

The spectral representation of Ty in terms of its eigenvalues and eigenvectors is

Ty = '2"] AR/ (4.2.2)
=1

We would like to consider the perturbations of the eigenvectors and eigenvalues of

T(e) from those of T for small values of €. To do this in the general case where

degenerate eigenvalues are allowed requires a bit of care. If a group of k eigen-

values are equal, say Y, =Y, ='': =%, the comresponding eigenvectors

Vi, V3, ' ,V, are not uniquely defined, and a discussion of perturbations

becomes rather ambiguous. Instead, the set of vectors satisfying
Tov =YV
form a k dimensional subspace of C™, the eigenspace V;. If v;, i =1, k is any

orthonormal basis for V; we may write the matrix which projects onto V, as

k
P; = Y viv;. Although the vectors v; i = 1, k are not uniquely determined, the
=1

matrix P, is. We modify our notation slightly and let y;, - - - , Y, denote the
q (g < m) distinct eigenvalues of Ty and we let P;, i =1, g be the projection

matrices for the corresponding eigenspaces V;. Note that the projections satisfy

P =P, P.P; = 5;F;

Then (4.2.2) can be written
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Ty = iYiPi
=1

We now wish to characterize the perturbations to the projection matrices

P, i = 1, q caused by the addition of the small matrix €T, to Ty.

In general we would expect that T(g) will have m distinct eigenvalues but
that these will condense to g clusters centered at the ;s as € = 0. The eigenvec-
tors corresponding to the k; eigenvalues of the i* cluster define a projection matrix
which we would expect to converge to P; as € = 0. It is the form of this per-
turbed projection matrix which we seek. The proof of this convergence and the
derivation of the perturbed projection matrix is accomplished in Watson for the
case of real symmetric matrices Tp, T, via a fairly simple application of Cauchy’s
theorem from complex analysis. the complex Hermetian case considered here is
virtually identical so we simply state the results. Let C; denote a contour in the
complex plane which contains only the eigenvalue ¥; (which is of multiplicity ;).

Let ¥,(€), v,(€) denote the eigenvalues and eigenvectors of T(g). Then

#Y(e) inside C; = k; + O(€®) (4.2.3a)
and, if we define
Peo= ¥ vvi
iy{e) C;
Then
R P,T,P; + PT P
Ple)=Pj+ey —L—11F 4+ 06h (4.2.3b)
et %~ Ye

Equation (4.2.3), then, gives a general expression, correct to first order in €, for

the perturbed projections and is the key result for our applications. We can use |

this to approximate the asymptotic bias in the eigenvector estimate of the response

space.
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For simplicity we initially assume that the eigenvalues of X¢ are all equal to
Y, so that ¢ = YPp where Py is the rank p projection onto the p dimensional space
R. Let 0% = Tr[Zy] be the total noise power, set Xy = (1/63)Zy so that Ty is
non-dimensional and of order one, and let € = 0’1%,/7 be the noise-to-signal power
which we assume small ( €1 ). The eigenvector estimate of the response space
R is formed from the p dominant eigenvectors of

T =Py + oFZy = Y(Pg + €Zy)

These eigenvectors are identical to those of Pp + €Xy/, so we may use (4.2.3) to
obtain an expression for the projection onto the estimated response space. f’R. In

this case
T0=PR q=2 'Yl=1 'Yz’—"o P1=PR P2=Im—PR

IA)R = PR + £ [Pzz’NPI + Plz,sz] + 0(82)
= B + ([T, - PRSP + PeZy(T, ~ P)| + 06D (429

Equation (4.2.4) demonstrates that the eigenvector estimate of R is in general
asymptotically biased and, since [PZZ’NPI + Plz'sz], the fractional bias is of
order € (the noise-to-signal ratio).

Equation (4.2.4) generalizes readily to the case where the eigenvalues of Z¢
are not equal. Suppose that

q
zs = Z YiPi so that PR = i Pi
=1

=1

Then, if we estimate Py using the p dominant eigenvectors of Z, an application of

(4.2.3) yields

(I, — PRENP; + PEN, — Pp)

Pe=Pp+3 (4.2.5)
=1 ‘ Yi
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Note that if Zy = o2, we have
(@, — PRENPR = %L, — Pp)Pp =0

so the bias is zero as expected. More generally, it is not hard to show that the
bias term will vanish if and only if the matrices Pp and Zy commute and that this
will occur if and only if the response space is an invariant subspace of the matrix
Ty (ie. ve R = ZyveR). We will see that in some cases of interest this
property will hold at least approximately.

An asymptotically unbiased estimate of the response space can be computed
if the the structure of the noise covariance matrix Zy is known or can be con-
sistently estimated up to a multiplicative constant (e.g. Gleser, 1981; Park and
Chave, 1984). This can be easily accomplished by using the matrix Xy to
transform the sample SDM S so that the | jsotropic error assumption holds.
Specifically, let Z}{,‘ be any square root of Zy - ie any matrix satisfying
ZX?(Z}?)' = Zy. Note that the existence of such a square root is guaranteed by the
Hermetian property of the error covariance matrix Zy, and that the construction of
a (lower triangular) square root can easily be accomplished using a complex ver-
sion of the Cholesky decomposition. We will assume that the error covariance
matrix is positive definite (this will always be true if there is any instrumental
noise) so that the square root matrix is non-singular with inverse 2;,"“"’.

Then transforming the data vectors, the response space vectors and the error
vectors

Xy = TA%, = § oGt u) + Bt o= S o+ € (426
1 Fl

we find that we now have a problem with isotropic errors since

E(ee”) = TyE(ee) Iy = 1,
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If

N
S =n1 E X' X', = Zy*SEy*
1

and v, i=1,m are the eigenvectors of S’ ordered by the magnitude of the

corresponding eigenvalues, then as above,

R =Sp {vi’:izl,p}

is an asymptotically unbiased estimate of

R =Sp {u,-’:i=1,p}

R =Sp {z%v,-' ti=1,p } (4.2.7)

Consequently,

will be an asymptotically unbiased estimate of R.

If we again adopt the MEV model to obtain an identifiable parametrization
we can use the transformation of the data described above to convert to the stan-
dard MEV problem so that all of the results described in section 4.1 can be used.
Specifically, choose the transformation matrix Z;,% so that it can be partitioned

A
1% _ 1m o0 .
Iyt = [A21 Azz] where Ay is pxp
(e.g. form the inverse of Xy and then compute the Cholesky decomposition so that

% . o
Zy™ is lower triangular). Then transforming both sides of (4.1.1) we find

I
P 4
T]a+E

I I
= p ’_ ¥4 ’ ’
[ Ay ATl + AgT A;}] Ay @ + E = [T] o +E (4.2.8)
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where the columns e;” of the error matrix E’ now satisfy the isotropic error condi-

tion so that the model takes the standard MEV form of (4.1.1).

The estimates T’ computed from the eigenvectors of S’ have all of the pro-
perties given in section 4.1. Estimates of the original parameters can be easily

obtained in terms of T’
T = ASITYA ) - AZlAY (4.2.9)

Since the elements of T are linear combinations of the elements of 1’, the asymp-
totic covariance of these parameters can be easily computed in terms of the
asymptotic covariances of the elements T’. These are obtained using (4.1.10) and
(4.1.11) of section 4.1. Note that this result for estimation errors assumes that 2y
is known. If Zy must be estimated, the computation of estimation errors will have

to be modified to take this into account.

4.3 : Some Comments on the Computation of Errors

In Chapter 2 we stressed that the response space provides a more fundamen-

-tal and natural description of the interelationships of all field components at all
stations than the usual transfer functions which assume a special ‘normal’ refer-

ence station. On the other hand, in the discussion of error estimates in the last
two sections, we have assumed a MEV model which is essentially equivalent to

the usual transfer function parametrization with a special reference station. (Note

however, that the MEV estimates take account of the noise in all channels and

thus differ from the usual transfer function estimates). This is because we must

describe (parametrize) the response space precisely in terms of a set of numbers

(parameters) in order to define and compute estimation €rrors. The parameteriza-

tion may be specified in many different ways, although all parametrizations

describe the same object (R). All parameter estimates will be computed in terms
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of the eigenvectors of the SDM S, but the computation of estimation errors will in
general depend on the parametrization. In this section we discuss how the results
given above for estimation error covariances for the MEV parametrization can be
used to compute error covariances for other possible parametrizations. We also

discuss briefly how the perturbation methods described above can be used to

derive estimation errors.

In Chapter 2 we suggested imposing constraints of the form W;U=C to
uniquely define the vectors u; which span R. The MEV parametrization is a spe-
cial case of this. Conversely, all parametrizations specified by constraints of this
form can be transformed to the MEV form with a general error covariance. To
demonstrate this we first note that we can rewrite the constraint of (2.3.7) as
(CW)U = I, so, without loss of generality, we may assume that C = I,. Let
W{: (w, - - W) and pick vectors w;, i = p+1, m such that { w; : i = l,r}z }isa

basis for C™. Setting W} = (W,,; ‘- W,,), we have

w L
WU=|o [Us|w”
Transforming the data matrix = by pre-multiplying by W thus transforms (4.0.1b)

to

1

l=w

i

IP ’
= w,u o+ E (4.3.1)

where the. error vectors e;” now have error covariance X’y = WEyW". The model
of (4.3.1) is in the standard MEV form (with general error covariance, even if the

original error covariance is isotropic). Letting

A
T = 11 0
( N) [A21 A22

we may transform the data as in (4.2.7) to reduce to a MEV model of the standard
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form (4.1.1) with isotropic errors. If 1’ is the estimate of T for this transformed
model (computed via (4.1.5) from the eigenvectors of Z’ﬁ/’WSW*Z’ﬁ/’ * ) then we
find that the estimate of U satisfying the constraint (2.3.7) is given by

A 1
U=w1! . p 432
[AE%T'AH - AE%Au] 32

With the regularity assumptions of section 4.1 the parameter estimates T’ are
asymptotically normal with covariances which may be computed using (4.1.10).
Again, the elements of U are linear combinations of the f',-j’s so the asymptotic
covariances of the U, s are easily computed. -

The argument given above demonstrates that for any linear constraint of the
form (2.3.7) we may transform to a standard MEV problem, use the methods of
section 4.1 to compute estimation errors for the transformed problem, and then
transform the results back to the desired parametrization. An alternative, more
direct, approach is posSible. Suppose we have an estimate U’ of the parameters U’
with U’ identified by the constraint WU’ = I, and we wish to find estimates for
the parametrization satisfying the constraints WU =1,. We can easily compute
the estimates of U directly in terms of 0 -ie. U= ﬁ’(WfJ')‘l. In a similar
fashion, if we know the asymptotic distribution of U’ we can find the asymptotic
distribution of U.

If { is asymptotically normal then for the sequence of estimates Uy’ based

on samples of size N, we have, as N — oo

N Oy -U) -G
where G is a matrix whose elements are jointly Gaussian. We may thus write
Uy=U+N%G+ 00

so to first order in N-%
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Oy = (U + N%G) [W(U’ + N“"lG)]_1 + 0
For the second term we have
WU + v 4G)]! = [I, + VAWU) WG L(WU)!
= [I,, - NAWU)'WG + oY) (WU !
= (WU - N AWU)TWGWU)™ + 007 Y)
where we have used (I+ €A)™! =1 — €A + O(e?) in the second step. Multiplying
the two terms out and simplifying we find
Uy = U + N 41, - U(WU)Y 'WIGWU) ! + o(v))
oras N — oo
N4 Oy - U) - [I,, - U(WU) 'WIG(WU)™! = FGH (4.3.3)

Equation (4.3.3) gives a linear expression for the asymptotic distribution of U - U
in terms of the Gaussian random matrix G whose covariance is assumed know, so
asymptotic estimation errors can be easily computed. Specifically, if the covari-
ances of G are given by Oy = Cov(Gi,Gyp), then the asymptotic covariances

of the elements of U are given by
Cov(U;,U;p) =N~ l/d%' FyHyFrpHpOupr (43.4)

where the form of F and G can be inferred from (4.3.3). If U’ represents the
MEV parameu'ization so that
A I
r=| P

then the covariances Gy needed in (4.3.4) are obtained from the results given in
(4.1.10) and (4.1.11).
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There is yet another approach to the computation of estimation errors. This
is based upon the perturbation methods described in (4.2.3)-(4.2.4). Briefly,
assuming isotropic errors with variance o and using (4.1.9) we have
S = 3 + N*G where the asymptotic distribution of the elements of the matrix G
is complex multivariate Gaussian. The covariance of the elements of G are given
for the Gaussian errors case in Appendix B. We may then use (4.2.3) and (4.2.5)
with To=%,T;=G and € = N7 to find

[ (Im - PR)GP, + PiG(Im - PR)

Pp— P =N%Y ] +owh) (435

i=1 Y, - o
where the y/s are the eigenvalues of X and the P/s are the projections onto the
corresponding eigenspaces. Equation (4.3.5) gives an asymptotically correct
expression for the random perturbations of the projection Py as a linear function
of G. The asymptotic covariance of N%(f’R — Pp) can thus easily be calculated as

in (4.3.4) using the covariances of the elements of G given in Appendix B.

4.4:Estimation of the Noise Covariance I

Parameter Identification

To obtaih efficient, unbiased estimates of the response plane R, together with
meaningful estimation errors we must know, or be able to estimate, the noise
covariance matrix Zy (up to a multiplicative constant). In all of the above discus-
sion we have assumed that ¥y was known. We now turn our attention to the

more realistic situation where Xy must be estimated from the data.
Our general model for the population SDM is
T=ES)=Z+2Xy= UZ,U" + Zx(0)

where U and X, are, as above, the parameters which characterize the signal matrix

T;. The noise covariance Xy depends on the vector of | unknown parameters
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0 =(,, - 6) which we must estimate. As we have discussed above, the
unique identification of the parameters U and X, requires some constraints on U.
For the geomagnetic array models which we are considering, these constraints are
equivalent to making a ‘normal’ reference field assumption. When the error
covariance also depends on the unknown parameters 0 there is a further, and more

difficult parameter identification problem.

To be definite, we identify the signal covariance parameters by making the

MEYV assumptions so that we have

I, R :
Z=|L|5% [Ip T ] + IpO) 4.4.1)

where X, = yloa’. The matrix X depends upon the signal parameters
t= (T, £, ) and the noise parameters 0. Suppose there is at least one set of
parameters (T, 0) such that (4.4.1) is satisfied. Are there 0" # 0, ¥’ # T such that
X = Zy(T) + Z(0)? If so then the parameters O and T can’t be determined from

even perfect knowledge of ¥ and the separation of the data covariance into

uniquely determined noise and signal parts will be impossible. Note that we have

~ already made an assumption about the parametrization of Z¢(T) to guarantee the

unique identification of T from knowledge of Xg. We will make a similar assump-
tion about the the parametrization of Zy: we assume that if Z)\(0;) = Zy(0,) then
0, = 0,. This eliminates any trivial identifiability problems which can be solved
by changing the way we parametrize the noise covariance without changing the
class of possible noise models. The question that we address here then, is how
general a class of noise models can we assume and still be able to uniquely
separate signal and noise. It is clear that Zy can’t be arbitrary, because if we
allow a completely arbitrary noise covariance, one way of fitting the data is to say

that everything is noise. We must have a priori knowledge of the parametric

form of the error covariance in order to have any hope of separating signal from
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noise.

Note that the notion of identifiability in statistics can be somewhat more gen-
eral than this (e.g. Bickel and Doksum, 1977). One can ask if the model parame-
ters can be uniquely recovered from the full distribution of the data. Here we
consider only the possibility of recovering the parameters from the second
moments. Note that for the model of (4.4.1) with Gaussian errors these will be
equivalent, since in this case the second moments completely determine the distri-
bution. We should also note that identifiability is often defined as a property of
the entire parameter space. In this case the parametrization is said to be
identifiable only if the mapping between the parameter space and data distribution
is one-to-one. With the definition used here, identifiability is a property of indivi-
dual points within the parameter space. If a point O in the parameter space has
the property that no other point in the parameter space produces the same data dis-
tribution then the model is identifiable at 8. The approach used here is similar to
that used by Anderson and Rubin (1956) in their discussion of parameter

identification for factor analysis models.

The problem of second moment identifiability reduces to a question about the
uniqueness of the solution to the non-linear system of equations (4.4.1). We may
get a very rough feel for the restrictions imposed by the requirement of
identifiability by counting parameters. The signal covariance depends on 2mp-p?
real parameters and (4.4.1) is equivalent to a system of m? real equations. Conse-
quently we would expect that Zy can depend on at most (m2—2mp+p2) real param-

eters.

For a single 3 component MV station, which we fit a plane wave response to,
we have p=2, m=3 and (m2—2mp+p2) =1 so Iy ( a 3x3 matrix ) can depend on
only a single parameter (the scale of the total misfit of the plane wave model).

On the other hand, for a five staion MV array with p=2, m=15 and
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(m*-2mp+p®) = 169. Even for small arrays, this constraint is very weak. Note
however that its satisfaction does not guarantee identifiability; in general further
conditions will be required.

The problem of parameter identifiability has been studied extensively for the
case of a diagonal error covariance Xy = diag( o3 -, 0',2,, ). A classic result
in this case (e.g. Kendall and Stewart, 1979) is that when m=2, p=1 and
Ty = diag( 62, 63 ) the parameters are not identified. (In fact, this can easily be
verified by the simple parameter counting approach.) A large number of
identifiability results for the case of a diagonal Xy are given in Anderson and

Rubin (1956). A generalization of one of these will be useful to us.

For geomagnetic array data it may be necessary to allow for correlated local
noise. Cultural noise and some forms of instrument noise (section 2.4) may be
coherent between channels at a fixed station, but not coherent with noise at other
stations. A straightforward generalization of the diagonal covariance matrix model

which allows for this is the block diagonal covariance model

Iy = diag(E) (4.4.2)

~ where Z; is the (kxk for k component data) locai noise covariance for the i** sta-

tion. Following theorem 5.1 in Anderson and Rubin we have the following

sufficient condition for parameter identifiability for this error model.

Theorem 1: Suppose X = X¢(t) + Zy(0) where T = (T, Z,) as in (4.4.1) and where
Zy has the block diagonal form of (4.4.2) with kxk matrices on the diagonal.
Suppose that X, is non-singular (of rank p) and that whenever the k rows of

o[t

corresponding to any block on the diagonal are deleted from U, the remain-

ing rows of U can be rearranged to form two disjoint matrices of rank p.
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Then the parameters of Xg and Zy are uniquely determined.

The proof of this is a straightforward extension of the proof give in Anderson
and Rubin (whose proof, in turn, follows a result give by Albert (1944)). Since
there are several significant differences with our setup (block diagonal error
covariances, complex matrices, different notation, and a different parametrization

of the signal matrix Zg ) we offer a proof of the theorem in Appendix C.

As an application of this theorem, consider the case were we assume plane
wave sources p = 2. Partition U by stations or=(ult - UT') where n is
the number of stations. The two columns of U;, i = 1, n are the fields at station i
which are coherent with two orthogonal polarizations of unit magnitude at station
1. We thus expect the two column vectors for the i* station Uy, Uy to be
roughly orthogonal (and certainly linearly independent) so that the matrices U;
should all be of rank 2. The theorem implies then, that whenever the number of
stations is at least 3 the block diagonal covariance parametrization should be
identified. Thus even for small arrays, arbitrary local noise covariances can be
assumed. This is a significant advantage to multiple station data analysis - no

assumptions about local noise are required.

If the total noise is small compared to the signal it is possible to establish
more general parameter identification results which allow for models with noise
which is coherent between stations. We now state a general theorem of this
nature. Our theorem, which we prove in Appendix C, will justify the
idenﬁﬁabﬂity of the parameters for a model for the noise covariance which we
describe in the next section. We will apply this model to MT and MV data in

sections 4.8 - 4.10.

Theorem 2: Suppose I =g+ Iy(0) where Zg is fixed and of rank p with

1=l = 1. Let = f: VvV, let Pp = f: v;v; and Qg = I, — Py be the pro-
i=1 |

=1
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jections on to the response space R and its orthogonal complement.

Suppose that there are 6, M such that whenever

II Qrl Z70)) — Z4(8,) 1Qg || < &
then

Il Zv(8y) - 270 || < M || Qi Zn(0y) — Z(8y) 1Qg || (4.4.3)

Then there is € > 0 such that when " (0 || < € the parameters are uniquely

identified - ie. if @ is such that || Z\(8) || < € and Zg + Zy = Z5’ + (@)

then X = Z¢" and 6 = 0,.

To explain this formally stated theorem we give a ‘heuristic proof’ which
suggests an iterative method for recovering the parameters of interest, R and 9,
from . We will use the approach described below as the basis for our parameter
estimation scheme which we describe in section 4.6. Suppose we knew Pp, the

projection onto R (and hence Qg). Then we could compute

Qr ZQp =Qp Zy(0) Qg - (4449
By assumption there is O which satisfies (4.4.1); the condition (4.4.3) for theorem
2 guarantees that there is only one such 0. If we knew P we could, at least in
theory, find 8. We are not given P, but since Xy is small we can get a gbod
approximation P, from the p dominant eigenvectors of . By (4.4.2) this will be
approximately of the form Pgj+ €Ay, where ||Ag|| is of order one. Then
Qo =1, — Py = Qg ~ €Aq and, since QpZs = £/Qp = 0, we have |

QuZQp = QuZN(8)Qy + €?A0TsA (4.4.5)

Since ||Zy]l = € and ||Z|| = 1, the second term is small compared to the first.
Thus
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Jo®) =QpZQp-QyE0) Qo = 0
so we may approximate @ by choosing 6, to minimize || J5(8) ||. The condition
(4.4.3) guarantees that Zy(6y) will be a good approximation to Z\(8) provided
| J5(80) || is small enough. |
If we now use the approximation to the noise covariance Zy(8) to transform
X to
3 = Z48y) T Zy* *(8p)

we can get a better approximation P; of the projection Pp. This will have the

form
P, =Pp + %A - where ||A]l=1
We may then proceed as above to find an improved estimate 6, of 0. This pro-

cedure can be iterated to convergence, so the parameters 0 and R can be recovered

from X.

4.5: Estimation of the Noise Covariance II:

Parametrization
We now turn our attention to the problem of specifying a parametric form for
the noise covariance matrix Xy. In general it is useful to write the noise vector ¢;

as a sum of two uncorrelated vectors
=8 +m; with E@Em;) =0
where &; represents local noise which is incoherent between stations and T;
represents non-local noise which occurs coherently at more than one station in the
array.
The local noise vector &; will include instrument noise, local cultural noise

(whose length scale is small compared to station separation), the effects of wind
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and ground vibrations, etc. Letting §j,- be the noise vector at station j for time seg-
ment i, the assumption that this noise is local implies E(§;&;;) = 8;;%; where zZ
gives the error covariance for the local noise at station j. Our application of
theorem 1 of section 4.4 indicates that even for small arrays we can assume arbi-
trary local noise covariances X;, We will thus in general assume a block diagonal

form (with no other restrictions) for the covariance of the local noise vectors
EEE) = diag( %y, - -, %,) (4.5.1)
This model can be simplified if warranted.

The specification of the covariance structure for the non-local errors is much
more problematic - there is no general model (whose parameters can be uniquely
identified) which is appropriate to all situations. Indeed, modeling the structure of
the non-local noise requires some additional information (or assumptions) and
must be treated on a case by case basis. We will consider here only the case of
fitting a plane wave source model (p = 2) to data from a small regional array. We
thus assume the response space is of dimension two and treat the gradient terms
(and their effect on the vertical magnetic and electric field components) as noise.
If we assume that all coherent noise is related to such source effects, we can then
use the results from the exploratory data analysis of Chapter 2, and our random
source model from Chapter 3 as guidance in formulating a model for the covari-

ance of the coherent noise.

Although we cannot be sure a priori that such a model is correct, we can test
the fit of ihe model to the data. If we can obtain a reasonable fit to the data for a
range of frequencies and for a number of arrays we can be confident that the
model is general enough to dcscﬁbe the true situation adequately. If this is not
the case, then we must explore physically reasonable extensions to the model

which do fit the data. The model proposed here is thus a starting point - in a

sense a hypothesis to be tested - and is subject to modification as we learn what
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the data has to tell us.

One could question the treatment of of the horizontal source gradients (and
their effects on the vertical magnetic and electric fields) as noise. These gradients
clearly represent a signal which contains useful geophysical information. Indeed,
in order to adequately model the source-related noise, we will have to treat the
gradients as signal to estimate the parameters which describe Zy. We would
further argue that the utility of small geomagnetic arrays will be greatly enhanced
when both plane wave and source gradient responses can be reliably estimated.
There are, nonetheless, good reasons to treat source gradient effects as noise for

the data analyzed in this thesis.
The fact is, the plane wave signal is by far the dominant signal. While

power due to gradient effects can be quite large for vertical magnetic fields, the
power in the horizontal gradients is often only barely above background (local)
noise levels for small arrays. Furthermore, the arrays we consider here were not
designed to measure gradients - they often are linear, making a meaningful estima-
tion of gradient responses impossible. As a result we will see that we can gen-
~erally obtain only qualitative information about gradient effects. On the other
hand we can usually obtain high quality quantitative results for the plane wave
responses. It is thus reasonable to take the perspective that the plane wave
response space is the parameter of primary interest. Finally, with a random source
model, fluctuations in the source terms will perturb the dominant eigenvectors, and
hence our estimate of the plane wave response space. To minimize these effects
and to obtain meaningful estimation errors for the plane wave response space we

must include these effects in the noise.
Before proceeding we set some notation. We assume that / =3 or 5 com-

ponents of the fields are measured at n stations (so that m = 3n or 5n) and we

assume that the components of the data vectors X, are ordered so that the first 2z
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components are horizontal magnetic fields

X
()

where X, is the 2n-vector of horizontal field components and X, is the n- or 3n-
vector consisting of vertical or vertical plus electric fields for each of the n sta-
tions. We will use similar notation for all vectors in the remainder of this section
and throughout section 4.9. We will also assume that the station coordinates are
X; = (x;, ¥;) and that the origin of the coordinate system is chosen so that the aver-

age coordinate X = Q.

Consider initially only the horizontal magnetic fields. Let

. - r - r -

X1 X1 »1
N1 | X1
Whi=| . Vhe = | Vb3 = | 4.5.2)
xn xn };n
byn J \ -yn P sxn 4

so that Wy, W, W3 are just the gradient functions g3, g4, g5, respectively,
evaluated at the station coordinates. With our assuinpn‘on that all coherent noise is
source related, the results of Chapter 3 imply that we can approximate the

coherent noise vector for the horizontal fields as

Mt = FuBe (4.5.3)

where ‘Ifg =(V1 V2 V3 ) and Py is the three vector of coefficients of the gradient
terms for the ¥* data segment. This will only be strictly correct for a 1-d earth.
Just as lateral variations in conductivity perturb the uniform fields of the plane
wave source, they will perturb the total fields associated with gradients. We will
assume (4.5.3) initially in the hope that the effect will be small enough to neglect,

at least for a first try. We may thus write the covariance matrix for the noise in
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the horizontal field components as
Ty = Elepend = PnZp Py + diag(Zyy, 0 > ) (454

where Xg = E(BB*) and X; is the local noise covariance for the horizontal com-
ponents at station i. The noise covariance of the horizontal field components thus
depends upon the nine real parameters which determine the unique real and ima-
ginary parts of the 3x3 Hermetian matrix Zg and the 4n real parameters which
determine the 2x2 Hermetian matrices Zy;, i = 1, n. Note that Xpy is linear in
these parameters. As a result parameter estimatiqn can be accomplished by rela-

tively simple means. We shall discuss this in'more detail in section 4.6.

If vertical fields are considered as well, the situation becomes more compli-

cated. For a 1-d earth we can use the results of Chapter 3 to write the three gra-
dient vectors as
1
v; = [“:,"Z] i=1,3 where ¥ =2C@)|. | W5, =¥;,=0 (455
1
Letting ¥ be the matrix whose i column is y; we can then write the noise

covariance for the three component data as
Iy = E(eep = YISV +diag(Zy, - - L %,) (4.5.6)

The only significant difference now is that the noise covariance depends in addi-

tion on C(®), (Schmuker’s inductive length scale), and the dependence of Xy on 4

this parameter is not linear (some elements of Zy involve products of C(®) and

elements of 2‘13).

The form for the noise covariance for the case where electric fields are also

included can also be derived for a 1-d earth using the results from Chapter 3. In

fact, as we have discussed in section 3.7, in 2- and 3-dimensional environments,

the results from the simple 1-d model are not likely to be particularly relevant for
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the vertical magnetic and (especially) the electric fields. For exploratory purposes
we suggest that it may be more reasonable to allow all of the elements of the vec-
tors Wy, i = 1,3 to be free parameters which must be estimated. That is, we
assume that the gradients are perturbed only slightly from what they would be for
the 1-d case and then attempt to estimate the form of the vertical magnetic and
electric fields which are associated with each gradient term. We will discuss this
more fully in sections 4.9 and 4.10. For now we note that if we can estimate the
vectors Y, i = 1, 3, (or any parameters such as C(w) which determine them) by
some means, the model for the noise covariance has the same form as for the case
where only horizontal fields are considered. For the remainder of this section we

consider this simpler case only.

Often the array is too small (relative to .source length scales) in one or more
directions so that one or more of the three gradient terms will not be measurable.
As we have pointed out in Chapter 3, there will still be vertical magnetic and
(possibly) electric fields associated with this unobservable gradient. In particular,
for small MV arrays where the actual gradients may often be too small to be
measured reliably, the vertical fields associated with these gradients can still be
quite large. We have seen this both for synthetic arrays (figure 3.11) and for real
arrays (figures 2.8 and 2.9). In this case the model for the ‘gradient noise’ of
(4.5.3) has to be modified. In the simplest case, where the array is so small that
no gradients can be measured, the vertical fields associated with the gradients will
be approximately constant at all stations in the array -i.e. the fields associated with
this vertical field ‘noise’ will be proportional to the vector u, given in (2.5.2). We

may thus model the noise covariance matrix in this case as
Ty = Pluyu, + diag( Ly, -0, Z,) 4.57)

which is of the same general form as (4.5.6). More generally, when one or two

(but not three) linearly independent linear combinations of the gradient vectors Wy;
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can be measured, we may consider a combination of (4.5.6) and (4.5.7). This
situation will arise, for instance, for a linear array in which the gradients of the
two horizontal field components in the direction of the array strike can be meas-
ured. These two gradients can be represented as two linear combinations of the
vectors Wy;. A third linear combination, consisting of gradients perpendicular to
the array strike is not measured.
The models for the noise covariance matrix discussed above are linear in the
unknown parameters. In general we can write these models in the form
Iy= i 0;Y; (4.5.8)
=1
whére the Y;, i = 1, r are known mxm matrices and the 8;, i = 1, r are real param-
eters. We give the explicit relationship between the parametrizations of (4.5.6)
and (4.5.8) in Appendix D. Parameter estimation for this sort of linear model for
real symmetric covariance matrices is treated by Anderson (1969; 1970; 1973).
We have independently developed an equivalent estimation scheme for complex

Hermetian matrices which we discuss in the next section.

We close this section by stating a theorem, proved in Appendix D, which can

be used to establish condition (4.4.3) of theorem 2 for linear covariance models of

the form (4.5.8).

r
Theorem 3: Assume Zy(0) = ¥ 6,Y; where the Y; are known matrices. Let Qg
=1

be the projection onto the orthogonal complement of the response space R.
Then, if the r matrices Y; = QzY/Q are linearly independent, there is M
such that for all 8,, 0,

| Zx(07) = Zn(0) Il < M || Qg Zn(8y) — Zn(02) 1Qr Il
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The linear independence of the matrices Y, is easily checked during the esti-
mation procedure described in the next section. We find that for the specific
models discussed here this condition always holds. Theorem 2 thus implies that,
for these models, the noise and signal parameters can always be uniquely

separated provided signal to noise ratios are large enough.

4.6: Estimation of the Noise Covariance III:

Estimation

We have already outlined, with our heuristic proof of theorem/ 2 at the end of
section 4.4, our general approach to the simultaneous estimation of the noise
covariance Zy and response space R. The approach is iterative, and is based on
the observation that if we knew Xy we could use the results from section 4.2 to
obtain an unbiased estimate of R, while if we knew R we could eliminate the sig-
nal portion of the SDM and estimate the parameters 8 which determine Xy. We
can thus begin with an estimate of R, use this to obtain an initial estimate of 6,
use this to improve our estimate of R etc. When the signal to noise ratio is large,

and condition (4.4.3) of theorem 2 holds, the argument given at the end of section

'4.4 suggests that this approach ought to work well and converge in a few itera-

tions. In this section we consider the second step in this procedure - estimating
the noise covariance parameters @ - for the case discussed in the previous section
where Xy is linear in the unknown parameters 0. For this discussion then, we

assume that we know, or have an estimate of the projection matrix Pp, and that
r
EN(O) = Z GiY,- (4.6.1)
=1

If Py is known exactly and Qg = 1, — P then

Sv' = QrSQg = QzEE"Q, (4.6.2)

depends only on the errors e; (the columns of E) and not on any of the signal
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parameters. We will base our estimate of  on Sy’.

Any matrix of the form QzAQy has rank at most m—p. Before proceeding it
will be useful to reformulate the problem slightly so that we may use matrices

which are generally of full rank. We may write
4 * m *
Pp=2 Vv Qr= X WV
=1 i=p+1
where the vectors v;, i = 1, m are an orthonormal basis for C™. Let
V=(V Vy)=(vy ~ - Vp | Vo "0 0 Vi)

Then transforming matrices A — V*AV corresponds to a rotation of the coordi-

nate system of C™. A simple calculation shows that for any mxm matrix A

s _lo o
V'QrAQRV = [ 0 v sz] (4.6.3)

where the matrix VAV, is (m—-p)x(m-p) and will be of full rank if A is. This
demonstrates that we may consider the (m—p)x(m—p) matrices of the form V5AV,
instead of the mxm matrices QpAQg without any loss of information. We thus

rewrite (4.6.2) as

Sy’ = V3SV, = V;EE'V, T (4649

Sy’ is the sample covariance matrix of the (m-p) dimensional error vectors
Vse;. Its expectation is
ESY) = ViEW@)V, = 3 6 VIY.V, = 3 0¥/ (4.6.5)
i=1 o=
The expectation of the ‘projected’ SDM Sy’ (now of dimension m-p X m-p) thus
is a linear combination of the projected matrices Y;. Note that the parameters are

not effected (i.e. the 0;s are the same in (4.6.1) and (4.6.5)). The problem of

estimating the noise covariance parameters 6 from the full sample covariance
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matrix S with R known can thus be reduced to that of estimating the same param-

eters for a virtually identical linear model from the smaller SDM Sy/".

We thus consider the general problem of estimation of @ for complex covari-
ance matrices with the linear structure of (4.6.1). To simplify notation for this
discussion we let M = m—p, C =Sy’ with EC = X, we drop the primes on the
matrices Y;, and we consider the problem in general with the understanding that

for our application we will use the projected matrices.

One obvious approach to estimation of 9 for the linear model (4.6.1) would

be to minimize
r 2 M r
IC-X6Y;IP= Y (Cu- X 0
=1 ki=1 i=1
Note that this is a standard least squares (LS) problem which can be easily solved.
The estimate obtained from solving this LS problem is unbiased, and with

sufficient regularity for the error distribution will be consistent.

This procedure can be refined. Let

C' =3% C X Y/ =AY A i=1,r (4.6.6)
Then
,
EC’ =] = Z GiY,-' (46.7)
=1
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We can form the M? dimensional real vectors from the elements on and below the

diagonals of the matrices C’, Y/, i=1,r

,

[ 1h2C7y, ) 1N3Y'

1N2C yp0g INZY 0
RCC,lz RCY'iIZ
ImC’y, ImY"yy5

ReC’'pm-1 ReY i m-1
L ImC'MM_l ) ImY iMM-1 ]

-

Then (4.6.6) implies
Ec=Y 0y, c=% 6y, +v  where Ev=0 (468)
i=1 =1
For the Gaussian case C’ has a standard complex Wishart distribution and the
covariances of the elements of C’ (equivalently, the elements of the vector v) can
easily be computed (see Appendix B). We can apply these results to find that the

covariance matrix of the real random vector v is

E(vv") = Yl (4.6.9)

By the Gauss-Markov theorem (cf. Graybill, 1976) the best linear unbiased
estimate of @ is given by the standard LS estimate

8 = @’ Qe where Q=(y; - ¥,) (4.6.10)

~

We cannot exactly compute the vectors ¢, y; i =1, 7 needed to compute 0 in
(4.6.10) since these depend on the unknown covariance matrix X, but this general
argument suggests an iterative procedure. Specifically, we start with an estimate
of 2(00) ( =1, say) and use this in place of X in (4.6.6) to compute approximate

vectors ¢, yfo) i =1, r. These are then used in (4.6.10) to compute an estimate
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8%, which is used to form an improved estimate £ of X, which is in turn used
to compute an improved estimate of the parameters of interest, 6. This pro-

cedure may then be iterated to convergence.

An equivalent iterative scheme for estimating the model parameters for (real)
covariance matrices with linear structure has been described by Anderson (1969,
1970, 1973). He proves that if the error vectors are Gaussian this procedure is
asymptotically equivalent to maximum likelihood. As a result, the procedure is
asymptotically efficient (for the Gaussian case). In fact, this holds even if the pro-

cedure is stopped after two iterations : the estimate 0? is asymptotically efficient.

There are some complications with this procedure in practice. To be a valid
covariance matrix for which we can compute the inverse square root f’.E% needed
to transform the matrices in (4.6.6), the estimated covariance must be positive
definite. Using the unconstrained (iteratively weighted) LS estimates of 6 we can-

not guarantee that

A r ~
Lc =3 6Y;
=1

satisfies this condition. For our specific parametrization the parameter estimates 6
determine estimates to a series of smaller covariance matrices fiB, f‘.,-, i=1,r (see
(4.5.6)). The elements of these matrices are essentially the parameters 0; the con-
nection is made explicit in Appendix C. If the first of these matrices, which
represents the non-local (source related) noise is positive semi-definite and the oth-
ers, which represent local noise, are all positive definite then f‘.c will be positive
definite. It is fairly easy to ensure that the estimates of these smaller matrices
satisfy the necessary conditions. To do this we essentially diagonalize each of
these estimated matrices and eliminate negative eigenvalues. The local and non-

local noise matrices are treated slightly differently.
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For the non-local noise we don’t know a priori what the rank of Zg should
be since some or all of the gradient terms may be too small to detect. For this
matrix we thus set all eigenvalues which are too small (including all negative
ones) to zero. Given a unit eigenvector v of f.g the associated eigenvalue is just
Y= v*ﬁﬁv. This is a linear combination of the elements of the estimated covari-
ance, and hence of the parameter estimates 6. Ignoring the fact that v is itself a
random quantity, which depends on the estimated parameters 0 and using the esti-
mation error covariance for the parameter estimates ® (computed using the stan-
dard LS approach), we may compute an approximate estimation error for Y. We
thus set to zero all eigenvalues which are less than some constant ¢ times their
estimation error. Values of ¢ between 1.0 and 2.0 seem to work fairly well; for
the results discussed in section 4.8 we have used a value of ¢ = 1.5. Using the
remaining positive eigenvalues, and their associated eigenvectors, we then recon-
struct our estimated covariance matrix f'.ﬁ which is now guaranteed to be positive
semi-definite.

We assume that the true local noise covariance matrices are all positive
definite, since with instrument noise that is incoherent between channels this will
~always be true. To ensure that the estimated local noise matrices are pos_itive
definite we diagonalize the matrices $; and replace all eigenvalues which are too
small (including all non-positive eigenvalues) with a minimum value. This
minimum value is determined as a constant (we have used 0.2) times the median
of all eigenvalues from all of the estimated noise covariance matrices. These pro-
cedures are admittedly quite ad hoc but they seem to work fairly well.

We remind the reader that the full estimation scheme that we have described
here involves a number of steps - we alternately improve estimates of R and
2\(0). In this section we have emphasized estimation of Z)(0). As outlined at

the beginning of this section and in section 4.4, this procedure is combined with
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the estimation scheme for R with a general noise covariance matrix described in
section 4.2. While the individual steps can be rigorously justified, the total algo-
rithm is rather ad hoc. There is an alternative way to put the two estimation steps
together which may be preferable to our approach. In order to estimate the noise
covariance we have eliminated the signal part of S by projecting into the orthogo-
nal complement of the estimated response space. Instead of doing this we could

have modeled the full covariance matrix
Z=ES=UZ, U +yZpy" + diag( X, --- , %,) (4.6.11)

as a covariance matrix with linear structure. We now must have estimates of U
for (4.6.11) to have the linear form discussed in this section. Again, an iterative
approach is possible. We can estimate U using the methods of section 4.2, esti-
mate the parameters of (4.6.11), use these to refine the estimates of U etc. We
have not developed this scheme, but we conjecture that, at least in some cir-
cumstances, this approach will be asymptotically equivalent to maximum likeli-
hood for the case where everything (including the ajk's) are jointly Gaussian (see
(Joreskog and Goldberger (1972) and Browne (1974) for suggestive examples in

the context of factor analysis models).

The difference between this second scheme and the one which we have
developed and applied to real data should not be significant when the signal to
noise ratio is large. With our approach we completely ignore all information
about the error covariance parameters in the subspace R. On the other hand, the
weighted LS approach to estimating the noise covariance parameters O down-

weights information about the parameters in directions which have large variances.

Since, with a large sighal to noise ratio, the directions which lie in R have very

large variances (relative to all other directions), the inclusion of this extra informa-

tion will have a minimal effect on the noise covariance parameter estimates. The

developmcnt of this alternative approach, and a comparison to the approach
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suggested here would be a worthwhile exercise.

4.7: Testing Model Fit

We have proposed a general statistical model for geomagnetic array data

which implies that the expectation of the SDM takes the general form
ES =X = UL, U™ + Zy(0) where UT = (I, 1) (4.7.1)

and we have suggested approaches to the estimation of the parameters T, X, and
0. We now consider the problem of testing the adequacy or ‘goodness of fit’ of
the proposed model (and of simpler possible models). If the model is adequate to
describe the true situation, the matrix ¥ formed from substituting the parameter
estimates in (4.7.1) should be very similar to the full sample SDM S when N gets
large. If these two matrices differ by ‘to much’, then a more general model will
be required to fit the data. What we need is a statistic which allows us to quantify

how much of a difference is ‘to much’.

A general approach to this problem is possible if maximum likelihood esti-
mation is used. We outline this approach, which is discussed in many texts on
mathematical statistics (e.g. Bickel and Doksum, 1977), and then discuss its appli-
cation to our situation. The general set up is as follows. We assume that the dis-
tribution of our data x is a member of a family of models which depend on 2
finite dimensional parameter 8. We write for the density function p(x;6). ® c RM
is the full parameter space (of dimension M), and ©y < © consists of a subset of
these parameters of dimension P < M. We want to test the null hypothesis that
the unknown parameter vector O is an element of the lower dimensional parameter
space ©, against the alternative that it is not. If we cannot reject the null
hypothesis, then we can say that the data can be adequately described by the
simpler model; there is no need to invoke the more complicated full parametriza-

tion to model the data.
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Let Oy be the parameter maximizing the likelihood p(x;0) over the restricted
parameter space ©; and let 8 be the maximum likelihood estimate (MLE) over the

full parameter space ®. The generalized log-likelihood ratio statistic is defined as

p(x;8¢) ]
(4.7.2)

p(x;8)

Under the null hypothesis (0 € ), and with sufficient regularity, (e.g. Lehman,

A= —2ln[

1983) the asymptotic distribution of the statistic A is chi-square with M—P degrees

of freedom.

To apply this result to our problem we must completely specify the distribu-
tion of the data. For this purpose, then, we assume that the vectors X (the
columns of the data matrix Z) are N independent, identically distributed complex
m-variate Gaussian random vectors with covariance matrix X. Then the joint den-

sity of the data can be written (Giri, 1977)
p(E:X) =tV lexp( ~-NTr{Z1 S])  where S=nN1EE" (4.7.3)
For our application of the likelihood ratio test the full parameter space © is the set
of all mxm positive definite Hermetian matrices (which can be parametrized by a
) ,
set of m” real parameters). and the smaller space O is the subset of matrices in
© of the form (4.7.1).
The MLE for X for the full parameter space is (Goodman, 1962) S. If we Jet

2, be the MLE over the restricted parameter space we can then write the likeli-

hood ratio statistic, after a bit of simplification, as
A = 2N( InlZy + Tr[E5'S] — InISI — m ) (4.7.4)

For our purposes this can be simplified further. With ©, defined as the set of
positive definite Hermetian matrices satisfying (4.7.1), where Zy(0) has the linear
form of (4.6.1), we see that if Xy € O, so is cX,; where c is any positive constant.

As a result, we can reparametrize the model so that ¢ = ”20" is one of the model
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parameters. Let 'g = Zo/c, where X’y depends on the parameters 0’. Then we

can write the log-likelihood as
Lic, £y;Z) = Inlp(c, Z¢;E)] = Nm Int = Nm Inc = N InlZy| — N Tr[Z75'S]
At the maximum of the likelihood the derivatives of L with respect to all parame-

ters must vanish. Setting the derivative of L with respect to ¢ to zero and simpli-

fying we find that the MLE’s ¢ and £y’ must satisfy
m = Tr(e8) 18] = Tr((Ep)'S]
since 652’0 =5.'.0 where f‘q is the MLE expressed in the original parametrization.
Thus the likelihood ratio statistic simplifies to
A = 2N( IniZyl — IniSl) (4.1.5)
The simplest application of this test is to the case where © is the one

dimensional parameter space consisting of all isotropic covariance matrices

¥, = 621,,. The MLE of Zq is then

m _—
8%,  where E=mTrS]=m" T %=7Y
i=1

where ¥;, i = 1, m are the eigenvalues of S. The determinant of S is the product
of these same eigenvalues so after some simplification we may write the likeli-
hood ratio statistic for this test as

Ao = 2N 3, (/P

i=1

Under the null hypothesis A is distributed as a %2 random variable with [ = m?-1
degrees of freedom. This statistic would be used to test the null hypothesis that
all structure in the spectral density matrix could have arisen from isotropic noise -
ie. that there is nothing of interest in the data. If A exceeds the appropriate (say

95%) critical point for the chi-square distribution with the appropriate number of
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degrees of freedom, we would reject the null hypothesis. In fact, for all SDM’s
we have looked at, it is not necessary to do a formal hypothesis test to be con-

vinced that the data cannot be modeled as isotropic noise.

A more useful null hypothesis is that the data can be modeled as signal (from
a p dimensional response space) plus isotropic noise - i.e. (4.7.1) holds with
y = o’l,. Now the null hypothesis parameter space ©, is of dimension
2mp—p*+1 and is equivalent to the space of all complex Hermetian mxm matrices
whose eigenvalues satisfy Ay 2 Ap2 - - - 2k, = - -+ =2, The MLE %, can be
written in terms of the eigenvalues ¥y; and eigenvectors v; of S (Morrison, 1967)

3= i v+ i v where now Y = (m-p)~! i Y;
=1 =p+1 i=p+1
We thus have
IniSl = 3" Iny, % = ¥ lny; + (m—p)lny
i=1 i=1
so that the test statistic is now
m o
A,=2N 3 In(v/y) - (4.7.6)
=p+1

In this case A will be asymptotically distributed %7 where / = m?>~2mp+p?>~1. Note
that A can be thought of as a special case of A,. These tests were first proposed
(for the case of real Gaussian random vectors) by Mauchly (1946). Refinements
of the likelihood ratio statistic (to improve its performance for small samples)
have been considered for the real versions of the cases discussed above by Bartlett
(1954), Lawely (1956) and James (1969). These corrections are fairly small and

will not be considered here.

Finally, we consider testing the goodness of fit of the model (4.7.1) when Xy

has the linear structure of (4.6.1). Although the estimation scheme which we have
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proposed in sections (4.2) - (4.6) is not exactly maximum likelihood we can still
use our estimates to form f‘.o, substitute this into (4.7.4), and compute the statistic
A. While the asymptotic distribution of this statistic will generally be different
from that which would be obtained if the true MLE were used, this is still a useful
index of model fit. We believe that our estimates do not differ greatly from the
MLE’s, and we have conjectured that with a minor modification of the scheme
(which should have a very small effect on parameter estimates) the estimates will
be asymptotically equivalent to maximum likelihood. We are furthermore of the
opinion that even if the MLE of T is used in (4.7.4) the exact asymptotic distribu-
tion of A should not be taken too seriously since the distribution of the data vec-
tors is almost certainly not Gaussian. Finally note that using the true MLE to
compute A will always make the statistic smaller. Thus if we conclude that the
model fit is adequate with our parameter estimates, wé will conclude this more
strongly with the MLE’s, but if we conclude that the model fit is inadequate it is

possible that we may reverse our decision with the true MLE’s.

We close this section by giving a slightly more convenient form for the com-
putation of A for this last case. First, let A be any non-singular mXm matrix.
‘Then for the determinant of the product of two mxm matrices A and B we have
IAB! = 1Al IB|, so that InlASI — InlAXgl = IniSI — In/Zgl. A similar result holds for
post-multiplication of the covariance matrices by A. Let ZN(G) be the estimated
noise covariance. The signal part of the estimated covariance matrix ):‘.0 is calcu-
lated from the p dominant eigenvectors and eigenvalues of the transformed sample
SDM §’. Tﬂus if

S’ =Zy@7%S IO = i v+ i vvivi
=1 i=p+1
we will have for the estimated covariance matrix for the model

L4 %

£ = Sy@)7 £ Ty®) ™ = (@) (& + Tp()] Zp(8)”

169

2 o o r¥ & r_ o r¥
=2 Vv X v
=1 i=p+1

Here v, and v, are the eigenvalues and eigenvectors of the transformed SDM §’.

Then we have,

A = 2N(InlS| - InlZyl) = 2N(InIS’l - niEy) = 2N ﬁ In(y;)
: i=p+1

so that the test statistic can be easily computed in terms of the m—p smallest

eigenvalues of S’. Note that these are found as a byproduct of the estimation

scheme.

4.8: Examples of Noise Covariance Estimation

In this section we consider some example applications of the noise covari-
ance estimation methods described in sections 4.4 - 4.7. We apply these methods
to four small geomagnetic arrays - the five station EMSLAB long period MT array
(figure 2.1) and three MV arrays from Western Washington (figure 4.1). Two of
the MV arrays (numbered 1 and 8; solid dots in figure 4.1) are small five station

~ arrays having a maximum station separation of approximately 50 kilometers. The

third MV ari'ay (number 13; open circles in figure 4.1) consists of four stations
with a maximum station separation of approximately 150 kilometers (comparable
to the length of the EMSLAB line). We will concentrate initially on application
of the model to horizontal magnetic field data. We will see that the model for the
horizontal field noise covariance of (4.5.4) can fit the major features in the data,

although the ¥? goodness of fit statistics described in section 4.7 are oftcn' large

enough to reject the null hypothesis that the model fit is adequate. This indicates

that, at least in some cases, a more complicated model may be necessary. The
estimates of the signal and noise covariance parameters can be used to compute

estimates of the power spectra of the plane wave source, gradient and local noise
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terms. We will see that for all four arrays considered here, the power in the gra-
dients is small relative to local noise power for periods shorter than about 1000
seconds. For the smaller arrays the gradient effects on the horizontal fields can be
virtually negligible for all periods. Based on this observation we consider applica-
tion of the simple model of (4.5.7) to the three component MV data. This model
neglects horizontal gradients but includes a term for vertical fields, constant at all
stations in the array. Again, this model provides a qualitatively reasonable fit to
the data, but, based on the y? statistics the model fit is generally not completely
adequate. In sections 4.9 and 4.10 we will extend these models to allow for a

better treatment of vertical magnetic and electric field data.

We consider first the horizontal magnetic fields for the EMSLAB array. In
figure 4.2 we plot the eigenvalues of the traxisforrned horizontal field SDM

S'n = IV ®)SpZy* (0)

for a period of 1000 seconds. The eigenvalues of the untransformed matrix have
been plotted previously in figure 2.11a. The power in the smallest eight eigen-
values of S’y is virtually flat (compare to figure 2.11a where the smallest eight
eigenvalues have a one-and-a-half order of magnitude range). This demonstrates,
in a qualitative fashion, that the noise in the transformed data is reasonably isotro-
pic, so that the gradients plus local noise model provides a reasonable fit to the
data. The 2 statistics of section 4.7 allow for a more rigorous assessment of
model fit. In figure 4.3a we plot the 2 statistics obtained from fitting three
models to the EMSLAB horizontal field data for 16 periods ranging from .10 to

10* seconds. Model one assumes that the error covariance is isotropic Zny = o’L

Model two assumes that all noise is local (i.e. incoherent between stations) so that

Ty = diag( Zyy, -+ Zya ). and model three is the full local noise plus gra-

dients model given in (4.5.4). Note that because the stations in the array are all in

a line so only two gradient vectors are included in this model.
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The solid, dotted and dashed lines give the % statistics for models one, two
and three, respectively. The degrees of freedom for the appropriate x? distribu-
tions for the three models are, respectively, 63, 44 and 40, with 95% critical
points of approximately 83, 60, and 56. These are indicated by horizontal lines on
figure 4.3(a). The isotropic noise model fits the data very poorly at all frequencies
with values of the %2 statistics more than an order of magnitude larger than
expected. The full model, on the other hand, fits the data fairly well for the full
range of frequencies. Note, however, that even for this model the x? statistic
exceeds the 95% levels for 5 out of the 16 periods. This result, taken at face
value indicates that the simple local noise ‘plus gradients model for the noise
covariance matrix is not exactly correct. However other interpretations are possi-
ble. It could be that the discrepancy aﬂseé because our parameter estimates are
not exactly maximum likelihood, because the assumption of a Gaussian data distri-
bution is not valid, or because sample sizes are to small for the asymptotic x?
approximation to be valid. Given these uncertainties, and given the large
improvement in model fit (figure 4.3(b), where the 2 is plotted on a linear scale
makes this point much more dramatically) we believe it is fair to say that the

model of (4.5.4) reasonably describes the major features of the noise covariances.

For model two, we omit the gradient terms. While this model is adequate at
the shortest periods (below 400 seconds) it provides a poor fit to the data at lohger
periods. The results of figure 4.3 indicate that beyond about 1000 secénds the
gradient terms become the most important source of ‘noise’. The relative power
in the plane wave, gradient and local noise terms can be computed from the model
parameter estimates. Specifically, we have estimated the power in the gradients
by 6§ = Tr[f.ﬂ], and estimated total noise power 6’%, (i.e. total local noise in all 10
components from the diagonal elements of the matrices $yii=1,5. Plane wave

signal power og is Avery well approximated as the sum of the two largest
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eigenvalues of Sy, 6; =7, + ¥, (this can be refined to account for the effects of
noise on the largest eigenvalues). We plot estimates of Gg(m), 6';(0)) and 6’,%,(0)) in

figure 4.4. This figure is consistent with the 2 plots of figure 4.3. For very short

periods, 6;(0)) is much smaller than 6,2\,(0)), but for longer periods. 6‘2(0)) is larger

than 6%,((0). At the longest periods the gradient power exceeds the local noise
power by a factor of 3 or 4, so that the gradients become the dominant source of

misfit to the plane wave model.

The local noise power spectrum is substantially flatter than the signal power

spectrum. Roughly, we have for these estimated spectra
200N = 2 = o T2
Gp(a)) =cm " = cpl (4.8.1a)
-2 = T2
6X(w) = ¢, = ¢,T (4.8.1b)
&%(w) = eyt = ey T (4.8.1c)

The increased importance of gradient terms in the noise covariance models for
longer periods is due to the relative flatess of the local noise spectrum. There is
no evidence from these results that the ratio 6‘?(0))/62((0) increases with period (if
anything, this ratio decreases with increasing period). This suggests that typical
spatial length scales for sources in this frequency range are relatively independent
of frequency (although we may interpret the apparent decrease of 6’2,(0))/63(0))
with frequency as weak evidence that longer period variations are characterized by
slightly longer spatial length scales). We can use the results given in figure 4.4,
together with our simple model from Chapter 3, to get a very rough feel for
effective source length scales (but note that for this array, we have information
about source variations in the east-west direction only). From figure 4.4 we find
Gg(m)/d'g(co) = 1073, This can be compared to the results of figure 3.11 where we
plot Y3/, computed from the synthetic SDM = with 8y = 0.0 (curve (d)). For the
synthetic model Y3/Y; = 10~ when x, = x/ry = .03. Since for the EMSLAB line
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x = 150km, this yields source length scales rq = 5000 km. This is a very crude
approximation of the spatial characteristics of the sources; nonetheless the value is
consistent with that obtained from larger array studies (e.g. Porath et al., 1971).
Based on the results of Chapter 3 where we obtained good results with a relatively
larger non-dimensional array size (xp=.1), these results provide a strong
justification for the plane wave source assumption for arrays the size of the

EMSLARB line.

We have obtained similar results for the 3-component MV arrays. We dis-
cuss these briefly. In figure 4.5 - 4.7 we plot the y? statistics for the three models
described above, along with the estimated signal and noise power spectra, for the
three MV arrays of figure 4.1. Degrees of freedom for all models are given in the
figure headings. For all arrays the fit of the isotropic noise model (model 1) is
poor. The success of the other two models is somewhat variable. For the small
array 8 (figure 4.5) both model 2 and model 3 provide a reasonable fit to the data.
Model 3, of course, provides the best fit, but the improvement in model fit due to
the addition of the gradient terms is small. For array 13 (figure 4.6), which is
comparable in size to the EMSLAB MT line, the inclusion of gradient terms does

“improve the fit substantially. For array 13, (as for array 8) the full model fits the

horizontal field data quite well. The difference in the importance of the gradient
terms can in part be ascribed to the difference in array size. The results from
array 1 (figure 4.7), however, demonstrate that this may be only part of the story.
The %2 plots for this array, which is comparable in size to array 8, are somewhat
different than those for array 8. Here the gradient terms provide a substantial
improvement in fit at longer periods. This difference reflects in part the variations
of the source characteristics with time. It is also quite possible that a part of the
difference is due to the strike of the arrays : Array 1 is essentially a north-south

line, while array 8 is elongated more in an east-west direction, so the arrays detect




174

gradients in different directions. It is very likely that source gradients are larger in
the north-south direction than in the east-west direction. Note also that neither
model two or model three fits the data for array 1 particularly well; the fit at

shorter periods is substantially worse than for the other two arrays.

In figures 4.5(b), 4.6(b), and 47(b) we plot the signal and noise spectra
6?,((0), 62((0) and 6’12\,(0)) for the three MV arrays. The results are consistent with
the %2 plots - 62((0) is relatively large at longer periods for arrays 1 and 13, but
remains smaller than the local noise at all periods for array 8. The results for all
parameters are also quite consistent both among themselves and with those dis-
cussed above for the EMSLAB array. The power law formulas of (4.8.1) for the
spectra of these terms are approximately valid for all three arrays. Applying our
approximate estimate of source length scales we find for arrays 1 and 13
ro = 3000 — 4000 km. It is possible that the difference between the EMSLAB line
results and these results reflects a real difference in typical north-south and east-
west source length scales. At any rate, these results again offer strong justification

for the uniform plane wave source model for arrays of this size.

We now consider the application of the simple linear model of (4.5.7) for the
| noise covariance matrix for three component data. For this model we neglect hor-
izontal gradients and allow only local noise plus vertical fields which are coherent
and in phase at all stations in the array. In figure 4.8(a) we plot the ordered
eigenvalues of the 15x15 SDM S for array 8 at a period of 1600 seconds; in

figure 4.8(b) we plot the eigenvalues computed from the transformed matrix

S’ = TA@)SZH*"(®)

where @ is the parameter estimate for the model of (4.5.7). Again, the smaller

eigenvalues for the transformed matrix are nearly constant, indicating qualitatively
that the model captures at least the major features of the noise structure. For a

. 2 A
more quantitative assessment of model fit we again turn to plots of the x“ statistic.

175

In figure 4.9(a) and (b) we plot these x2 statistics for fits to an isotropic noise
model, and for the fit to the model of (4.5.7), for arrays 1 and 8. The asymptotic
distributions of these statistic have, respectively, 169 and 149 degrees of freedom.
For both arrays, the fit of the isotropic noise model is substantially worse for the
full SDM S than for the horizontal field sub matrix Sy (compare to figures 4.5 and
4.6). As we have discussed in section 2.5, (see figures 2.8 - 2.10) the eigenvector
associated with the third largest eigenvalue of the SDM can be well approximated
by the vector u, which consists of vertical fields which are equal for all stations.
These vertical fields represent the major deviation of the data from the perfect
plane wave source model. It is not surpﬁsiﬁgly, then, that the vertical field plus
local noise model of (4.5.7) provides a reasonable fit to the data. For both arrays
1 and 8, however, the misfit for this model is still substantially larger than the
95% critical values for the appropriate xz distributions. This simple model thus
does not provide a statistically adequate adequate fit to the noise covariance
matrix. Not surprisingly, the failure of the model is more serious for array 1,
where the gradients (which have been neglected in this model) are larger (figures
4.5 and 4.7).

To fit the noise covariance for three (or five) component data we will have to

consider more complicated models. We consider these in the next two sections.
We should emphasize that there is a substantial difference between statistical
significance and physical significance. The simple model described here does cap-
ture the main features in the data. It is likely that this model will in practice
prove quite adequate for routine processing of 3 component MV data from small
arrays. The additional complications introduced in the next sections may not
prove to be worth the trouble in many circumstances. The properties of the actual
plane wave response parameters (and their associated error estimates) for the

different noise parametrizations should be carefully examined. If the results for
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the simpler model are essentially identical to those from the more complicated

models considered below, then the simpler models will be preferable.

We close this section with a look at some estimates of the local noise covari-
ance estimates. In figures 4.10(a)-(c) we plot the noise covariance parameters
estimated for each station in the EMSLAB array - i.e. the noise power in the two
horizontal field measurement channels, (geomagnetic north (H) 4.10(a); and
geomagnetic east (D) 4.10(b)), and the magnitude of the correlation between the
noise in the two channels (4.10c). The most striking feature occurs in the D noise
components for station JEF. The noise power at this station is roughly a factor of
5 greater than at any other station. This static;n also has the largest noise power in
H. Furthermore, note that, at least at shorter periods, noise in the H and D chan-
nels at JEF is correlated. There is also a sfrong peak in the correlation of noise
between channels at a period of 2000 seconds for all stations. It is not clear at
this point what the significance of this is. It is quite possibly a statistical artifact
of some sort. Note that in general the noise curves for the stations in the
EMSLAB profile generally remain parallel - sites (or instruments) tend to be quiet
or noisy over a range of frequencies. Note also that the range of noise powers can
be quite large - roughly an order of magnitude. This is consistent with the univer-
sally poor fit of the isotropic noise models which fail even when gradients can be

neglected.

The results discussed here are just a sample of the sorts of analysis of noise
structure that is possible with a multiple station interpretation of geomagnetic
array data. More careful studies of a larger number of arrays should be conducted
to help clarify the relative contributions of cultural, system and source related
noise to the total model misfit. We have only given a very brief sketch of a few

examples here.
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4.9: Treatment of Electric and Vertical Magnetic Field Noise

In section 4.5 we developed a model for the noise covariance matrix which
included local noisé and the effects of gradients in the source fields. The model,
and the methods of estimation developed in section 4.6, were completely satisfac-
tory for horizontal magnetic field data. We now develop some techniques which
allow a more satisfactory treatment of the more general case where the vertical
magnetic and/or horizontal electric fields are included in the analysis. Again, we
consider the special case of fitting a plane wave source model to data from a small
array.

The methods described here are useful for both an exploratory analysis of the
data and for more formal model fitting. We consider both sorts of applications in
the next section, although we will emphasize the exploratory aspecfs. It is neces-
sary to have a fairly clear picture of what sorts of effects must be included in a
model before a more formal model fitting procedure can be applied. We do not
consider the results presented here as final by any means. The results and
methods discussed in this and the next section must be considered as somewhat
tentative at this point. Further developments, in both model parametrization and

estimation are needed.

As in section 4.5 we assume that the noise can be divided into local and gra-
dient components, and we assume that the covariance matrix of the local noise is
block diagonal. In addition we assume that the local noise vectors for the mag-
netic and electric field components at each station are uncorrelated. This will usu-
ally be justified for true system noise because magnetic and electric fields are
measured by separate instruments. This should also be nearly true for local cul-
tural noise. The E-fields are determined by the magnetic fields at the earth’s sur-
face in a region roughly one skin depth in radius; hence very localized distur-

bances of the magnetic fields have very little effect on the electric fields. With a
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station spacing substantially less than the skin depth, truly local cultural noise in
the magnetic fields has little effect on (and hence will be very weekly correlated
with) the electric fields.

Our model and notation for the non-local gradient related ‘noise’ is as in sec-

tion 4.5. Specifically, the three gradient vectors are written

v, = "\I’,‘: i=1,3
where the vectors yy,; give the horizontal gradients (as in (4.5.2)), and the vectors
y,; give the vertical magnetic and/or horizontal electric components which are
associated with these gradient terms. We consider here the problem of estimating
the vectors Wy, i = 1, 3. The model results for the 1-d case considered in Chapter
3 suggest a simple form for the vectors Yy, particularly for the case of three com-
ponent MV data (sec4(4.5.5)). However, as discussed in section 4.5, it is not clear

that these results will be relevant for the case of 2- or 3-dimensional conductivity

distributions. In this section we will thus consider the general case where the

form of the ;s is unrestricted.

Our full model for the data is

Xk = Uak + \PBk + gk (4.91)

where U and ¥ are the matrices whose columns are the plane wave and gradient

vectors, respectively. We change notation slightly. Let

U, Y, Wy

W = [U \I’] = Uz \Pz = “]z (4.9.2) i

o
W= 5:

where U and ¥ are partitioned, as above, into horizontal magnetic (h subscript)

and electric/vertical magnetic (z subscript) components. Note also that the vector

N, has a different meaning here and in section 4.5. With this new notation (4.9.1)

is
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X, = Wn + & (4.9.3)
The covariance matrices for the random vectors M and &, are
EEED = % Emmd =%, = | = 0
KSk 3 MM =Zq=| %y (4.9.4)
so we may write for the expectation of the SDM:
‘ Wiz Wy W,Z, W,
T=ES)=WE W +3,=|_Bton'b bzl 4
X 3 sznwﬁ W, W, Ze (4.9.5)
Partitioning S in the same way,
S = Shh Sz
Szh Szz

we find, if the local noise covariance matrix )35 is diagonal,
E(Sz) = W,Z,Wy
so that

W, = ESp)[Wy(WyWp) ™' 2]

-We don’t know Xn, but we can estimate it from an analysis of horizontal mag-

netic fields using the model and methods developed in section 4.6. Using this

estimate %,, we may estimate W, by

W, = S, [Wy(WyWp) 12 (4.9.6)

The last three columns of the estimated matrix W, are the desired estimates of the
vectors ¥, i = 1, 3. With these parameters estimated, we may treat the vectors
y; as known and proceed as outlined in section 4.6 to estimate the remaining

noise covariance parameters.

There is one serious problem with this approach. The estimates of the

matrices X, and ¥g must be reliable and non-singular. If array dimensions in one
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or more directions are too‘ small, it will not be possible to obtain a reliable esti-
mate of the full gradient covariance matrix Zg. For the small arrays considered in
this dissertation this is the typical case. We consider here one partial solution. To
be explicit we consider the case of a linear array (in the x-direction, say) so that
only two linearly independent gradient vectors are observable. More general cases
are treated in an analogous fashion. We rewrite the horizontal gradient vectors as

()

X1
0

xn
0

0
| [xn‘

and let y,;, i = 1, 3 be the corresponding vertical magnetic/electric vectors. Note
that the vectors Wy; and Wy of (4.9.7) are just linear combinations of the canoni-
cal gradient vectors of (4.5.2). To distinguish the last column of W=(UY¥),
partition the matrices W and Z, of (4.9.2) and (4.9.4) as

p22

Note that the vector W, = W3 gives the vertical magnetic/electric fields associ-

ated with the (unobservable) gradients perpendicular to the array strike.

For this case where we can estimate Z,;, but not the full matrix Z,, there is

a fundamental non-uniqueness in the model parametrization. To see this let

1
Wy = Wy + W Znty O'rz2 = Oz = Zqu a1 Tz (4.98)

Wu 0

W’= ’,
Wzl W22

Then it is easily verified that

WI,W* = WEL,W" (4.9.10)
The vertical magnetic/electric field vectors, represented by the matrix W, thus
cannot be recovered uniquely. For the case of a linear array considered here we

can, however, estimate Z,;;. If we substitute 2'111 and Wy, for f.,] and W, in

(4.9.6), we can form

W1 = Son[Wii (Wi Wi Z01] (4.9.11)

A simple calculation shows that this is generally biased as an estimate of Wy;, but
is (asymptotically) unbiased as an estimate of the matrix W’,; defined in (4.9.8);

1.e.
E(W,1) > Wy = Wy + Wy Zohy (4.9.12)

In fact, it is easily verified that with our assumption that gradient and plane
wave terms are uncorrelated, the first two columns of W;; and W’;; (i.e. the two
columns of U; see (4.9.2)) are identical - only the estimates of the fields associ-
ated with the gradient terms ,; and W, are biased. The same holds for the non-
uniqueness of the covariance parametrization noted above - only the gradient part
of covariance is over-parametrized. Thus for W’ and X', defined in (4.9.8) and
(4.9.9) we have |

wewe)  weww) a0l (viin)

, 1% 0 , Zgn 0
¥, = 0 z’a where ZB = 0 0’333 (4.9.13)

We can thus rewrite the parametrization of the noise covariance matrix as
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Ty = PERY 4+ T = WERYT + X
= W' T ] + OpWaVas + Zt (4.9.14)

We can estimate the parameters which determine ¥’; from the columns of
W,, of (49.11). If we know, or can estimate, ,3 (up to a multiplicative con-
stant) then, treating the estimated vectors \It’ 210 V', (and W) as known, (4.9.14)
is a linear covariance matrix model of the form discused in section 4.5. As an
example of a situation where Yz is (approximately) known we may cite the case
of three component MV data. Here we expect that y,3 should be approximately
proportional to the vector u, given in (2.5.2). We summarize the suggested pro-
cedure here. First analyze the horizontal field data (as in sections 4.5,4.6 and 4.8),
estimating X, and Xgj;. Use these in the estimator of (4.9.11) to find estimates
W, and V.. Taking these, together with the assumed form of W, ( =u, for
MYV data) as known, the model for the noise covariance matrix of (4.9.14) is linear
in the parameters X, O'g33, Zgy1. 1hese can be estimated (along with the
response space parameters) using the generalized least squares estimate of section

4.6.

Note that, if the model assumptions hold, this procedure yields a consistent
estimate of the noise covariance matrix Xy even though the vectors ¥z and Vo
cannot be estimated. From the standpoint of estimating Iy, then, the problem of
unobservable gradients need not be significant. On the other hand, the vectors Y
have a physical interpretation, and they are of interest in their own right. These
vectors, which give the vertical fields associated with the gradients represented by
Wy (i.e. the vertical fields which would be seen if the horizontal magnetic fields

were given exactly by the pure horizontal gradient represented by Wp,), can not be

estimated. The vectors which we can estimate, ', and ¥z, do not have such a

nice physical interpretation. These vectors do represent vertical fields which are
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correlated with the gradients, but if the coefficient B3 of the unobservable gradient
vector Y3 is correlated with the coefficients B, and B, of the observable gradient
vectors Yy, and Wy, these vertical fields will, in part, be due to the unobserved
gradient. It will not be possible in this case to separate the fields due to the
observable gradient from those due to the unobservable gradient. Note that even
for the idealized simple case of isotropic, spatially homogeneous sources with an
evenly spaced linear array, B; is correlated with B;, so this sort of correlation
should be expected (see discussion in section 3.6). In summary, for three com-
ponent MV data, we can always obtain approximate estimates of the noise covari-
ance matrix, but we can only estimate the vertical fields associated with specific

gradients when all three gradient terms are observable.

There are other approaches to the problem of estimating/exploring the form
of the electric/vertical magnetic field components associated with the gradient
terms. The most obvious approach is to treat these as signal so that the response
space R is now of dimension p = 5. By including the gradient terms as signal we
can (at least for the small arrays considered here) assume that the remaining noise

is all local so that the noise covariance matrix Xy is block diagonal. With this

- simple (linear) form for Zy we may use the iterative methods of estimation for

noise and signal parameters outlined in sections 4.4 - 4.6. In fact, in this case our
approach to the simultaneous estimation of the signal and noise parameters is
somewhat less than ideal. The justification for our approach is based upon the
assumption that the signal power is large compared to the noise power. In fact,
the po§vcr in gradient and local noise terms does not always satisfy this condition
(see figures 4.4 - 4.7). If the gradients are treated as signal, then, the condition of
a large signal-to-noise ratio is usually violated. In our experience the iterative
scheme of sections 4.4 - 4.6 usually works fairly well even in this case; the

method does however break down at times, particularly when local noise is very




large in one or more channels.

If we take the point of view that the response space is of dimension 5, we
can estimate the response space R (along with the local noise parameters) as in
sections 4.4 - 4.6. Fbr interpretation purposes we would like to identify vectors in
R with plane wave and gradient source terms. We propose one simple approach
to this problem. Let { v;,i=1, 5 } span R, and let

A

V = v,

where the columns of the mx5 matrix V are the vectors v;, and where, as above,
the matrix has been partitioned into horizontal magnetic components (Vy) and
vertical magnetic/electric components (V). If we analyze the horizontal magnetic
fields separately, we can, as in sections 4.4 - 4.6, fit a plane wave response space
(p = 2) model, obtaining an estimate of the horizontal field components for the
plane wave sources - in the notation of (4.9.2) these are given by the columns of
the matrix U,. We expect the horizontal components of the gradient vectors to be
approximately equal to the three horizontal gradient vectors ;. We thus expect
_that the horizontal components of the response space vectors will approximately
be linear coxhbinations of these five (two plane wave and three gradient) vectors.

If this expectation is satisfied exactly we will have, in the notation of (4'9'.2)’

Voo | Wa 4.9.15
V= Vz = WZA (.. )

for some matrix A. With these assumptions we know (or at least have estimates

of) Wy = (U Wy ). so if (4.9.15) holds exactly we could solve the overdeter-

mined system of equations Vyp = WyA for the matrix A. In fact, this system of

equations will never be satisfied exactly for any matrix A, so we must seek an

approximate solution using least squares. Specifically, we can find A which
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minimizes || Vi, — WyA |l As usual we find

A = (WyWy) "WV (4.9.16)

so we can then estimate W, by

W, = V,A™! = V(W V) "W W, (4.9.17)
Note that this method of estimating W, suffers from the same problems as the
estimator of (4.9.6) - the estimates of (4.9.16) and (4.9.17) can only be computed
if all three gradient terms are observable (otherwise W, W, will not be invertible).
Of course, it is always possible to fit a 5-dimensional response plane plus local
noise model to the data, but identification of vertical magnetic and electric field
components with specific gradient terms (i.e. estimating W,) requires that all three
gradient terms be observable. Note that thé approximate ‘fix’ of reparametrizing

the noise covariance as in (4.9.14) can be adapted to this method of estimating W,

as well.

One advantage to an approach which treats the gradient terms as signal is
that it allows a check on the validity of the assumption that the horizontal mag-
netic fields can be well approximated as the sum of a pair of arbitrary plane wave
source vectors and three fixed gradient vectors. If this assumption holds, then the
residual V, — W,A will be small. We will show in the next section that the resi-
dual vectors associated with the gradient terms are not always small, and that fbr a
fixed array they can have a similar form for a range of frequencies. These results
suggest that there can be systematic deviations in the horizontal magnetic fields
from the simple gradient model which was suggested by the results from the 1-d
models of Chapter 3. We will explore these effects briefly in the next section

where we consider applications of the methods described here to real data.
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4.10: Some Applications to Vertical Magnetic and Electric Field Data

We now consider application of the methods of section 4.9 to some actual
arrays. The results described here are of a somewhat exploratory nature; we will
concentrate on outlining the types of gradient related effects on electric and verti-
cal magnetic field data which are revealed by application of these methods. We
will see in general that there are coherent electric and vertical magnetic fields
which are correlated with gradients in the horizontal magnetic fields. The effects
on the vertical magnetic fields are qualitatively similar to those predicted for the
simple 1-d model, although there are some significant differences. The effects on
the electric fields are substantially different than predicted by the 1-d model. Our
results strongly suggest that in 2- and 3-dimensional situations non-zero
wavenumber sources have a first order effect on the impedances. This contrasts
with the 1-d case where such source effects are second order effects (Dmitriev and
Berdichevsky, 1979; Mareschal, 1986). Note, however, that none of the arrays
that we have analyzed are of sufficient size in all directions to produce consistent
estimates of the power in all three gradient terms. As a consequence, our conclu-
sions are somewhat tentative. More definitive statements about some of the points

raised here will require the analysis of data from larger two dimensional arrays.

We begin with an example application of the estimate of the vectors Wy
given by (4.9.6) for three component (MV) data (so that the vectors Wy give the
vertical fields associated with the corresponding gradient terms). In figure 4.11 we
give the results of this exercise for array 1 (see figure 4.1 for array locations).
This array is very narrow in the east west direction and, as a result, we find that
obtaining consistent results for all three gradients is impossible. In general two
gradient vectors are observable and these are linear combinations of the three fun-
damental gradient vectors given in (4.5.2). Our method for automatically deciding

which two linear combinations to include in the model is given at the end of
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section 4.6. In this case, the resulting vectors correspond approximately (but not
exactly) to north-south gradients in B, and B,. The actual gradient vectors are
plotted at the station locations in figures 4.11(a) and (b) with the estimated value
of the corresponding (complex) vertical field printed beside the station. Note that
the horizontal field vectors are all real (zero phase) and, as discussed in Chapter 3,
they, and the corresponding vertical components, have been scaled in kilometers
(the units of C(w)). Note also that at the longest period plotted (3600 seconds)
only a single gradient vector was resolvable (by the criterion of section 4.6). As
discussed in the previous section, the estimated vertical field components should
be interpreted as estimates of the vertical fields correlated with the observable gra-

dients, not the vertical fields caused by these gradients.

At all periods B, is very roughly equal and in phase at all stations in the
array. This is what we would expect from the 1-d model of Chapter 3. The devi-
ations from this simple form are greatest at short periods. We believe that this
mostly reflects the effects of noise on the estimated parameters since the gradient
related signals are smaller (relative to local system noise) at shorter periods.
Larger amplitudes of B, are associated with the north-south gradients in B,, and
amplitudes increase with increasing periods. Both of these results are expected
from the analysis of the 1-d model. In fact, however, for a 1-d earth there sﬁould
be no vertical fields associated with north-south gradients in the east-west field

component B,. This is clearly not the case here. Again, however, we must regard

- the significance of this observation with some caution since our estimates cannot

be interpreted as the vertical fields caused by the observable gradient. Note also
that the phase of the vertical fields appears to be somewhat unstable between
periods. We believe that this alsé is due to the effect of the unobservable gra- -
dient. In summary, while the general results given here (and these are typical of

those obtained for other small arrays) are reasonably consistent with the 1-d
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model, there is some indication of deviations (which may be significant) from the
simple model. The effect of unobservable gradients on the vertical fields renders

any attempt at quantitative physical interpretation of these results hopeless.

Even though the physical interpretation of the parameter estimates is ques-
tionable we can still estimate the noise covariance matrix and assess the adequacy
of the model. For three component data we can estimate the vertical fields which
are correlated with the resolvable gradients and adopt the model of (4.9.14) for the
noise covariance matrix with y,; = u,. We can then use the methods of section
4.6 to estimate the noise covariance matrix, and then use this estimate of the noise
covariance in our iterative procedure to improve estimates of the plane wave
response. As with the horizontal magnetic field models, we can assess the good-
ness of fit of the overall model using the X2 statistics of section 4.7. In figure
4.12(a)-(c) we plot these 2 statistics versus frequency for the three arrays 1, 8
and 13. In each figure we plot results for three models - the solid lines give the
%2 for model one which assumes isotropic noise, the dashed line gives the x? for
the model of (4.9.14) (model two) and the dotted line is for the model discussed at

the end of the previous section which assumes that the response space is of

- dimension p = 5 and that all noise is local (model three).

The number of degrees of freedom for the 2 statistics are given in the figure
captions. The isotropic model does not come close to providing an adequate fit to
the data. The goodness of fit for model two is substantially better, but not statisti-
cally adequate. The results for model three, on the other hand, indicate that this
model genefally provides an adequate fit to the data (although the fit for the
smaller array 13 is not so good). This last result indicates that the dimension of
the response space which can be resolved above the noise is at most five (as
expected). We have tried fitting lower dimensional response spaces and have gen-

erally found the fit to be inadequate. An example of this is given in figure 4.13
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where x2 statistics for fits with p = 2, 3, 4 and 5 are plotted for array 1 along with
the 95% confidence levels for the y? statistics. The results in this figure are typi-

cal of those obtained for a number of arrays.

We can apply the methods of section 4.9 to estimate the effects of gradients
on the electric fields. In figures 4.14 and 4.15 we plot the electric field vectors
which are correlated with the two observable horizontal field gradients for the five
stations in the EMSLAB line at periods of 2700 and 900 seconds, respectively.
Note that the assumed horizontal gradients together with the correlated vertical
components are plotted together with the corresponding electric fields. The results
for 2700 seconds are clearest (figure 4.14). For both of the observable gradients
the correlated electric field vectors point in roughly the same direction (east-west)
and have approximately the same phase at all stations in the array. This demon-
strates that there is a component of the electric fields, coherent across the array,
which is correlated with gradients in the horizontal fields. There is considerable
variation in the magnitude of the correlated electric fields between stations. These
variations in magnitude are approximately the same as those noted for the electric

fields associated with the plane wave sources - the same stations have large (or

- small) electric fields for both cases (see figure 2.6). At 900 seconds there is some

evidence of a similar pattern for the correlated electric fields, but there is consider-
ably more scatter in both the direction and phase of the electric fields. The verti-
cal fields given for these two periods are roughly equal across the array although,
at this period, there are some significant deviations from uniformity, particularly at
JEF (the eastern-most station).

We have also applied the second estimation approach suggested in section
4.9 : we have treated the gradients (and the associated electric/vertical magnetic
fields) as signal and fit a response space of dimension p =4. We then used the
approach suggested in (4.9.15) - (4.9.17) to find linear combinations of the
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response space vectors whose horizontal components are most nearly equal to the
two observable gradient vectors. The results of this exercise are presented in
figures 4.16 and 4.17 again for periods of 2700 and 900 seconds. The results are
very similar for the two periods. For both periods the horizontal fields are very
nearly equal to the two observable gradient vectors; the fit is slightly better at
2700 seconds, but is still quite good at 900 seconds. The electric fields correlated
with these gradients all point in the same direction (roughly east-west) and they
are in phase across the array. The vertical fields are also roughly equal across the
array. These results are similar to those obtained with the other estimation
approach, particularly at 2700 seconds. At 900 seconds however, the results from
the second approach are much cleaner - they appear to be less noisy, and the aber-

rations at JEF are not evident.

With both methods of estimating the electric fields which are correlated with
horizontal magnetic field gradients, we find significant interstation variations in the
amplitudes of the electric fields. Since the pattern of these variations is similar to
that observed for the dominant plane wave related electric fields, it seems likely
that these variations are at least in part due to local distortion of the electric fields
(Larsen, 1977; Zhang et al., 1987). To demonstrate this we have applied an
extremely crude correction to the estimates of gradient related electric ﬁélds.
Assuming that the inter-station variations of the amplitudes of the plane wave
caused electric fields are due only to local distortions (this is clearly only a very
crude first approximation), we may adjust the gradient caused electric fields by
dividing by the plane wave electric field amplitudes. The results of doing this are
presented in figure 4.18 for three periods - 900, 2700 and 8200 seconds. Indeed,

we now see that the electric field vectors at all sites are of comparable amplitude;

clearly the local distortions of the electric fields are similar for the plane wave and

gradient terms.
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Without the effect of local surface distortion, then, the electric fields corre-
lated with the horizontal field gradients are approximately constant across the
array. This result is not predicted by a 1-d model. In Chapter 3 we showed that
for a 1-d earth there were gradients in the electric fields associated with the gra-
dients in the magnetic fields. In fact, for a 1-d earth, the electric fields at any sta-
tion are related to the magnetic fields at that station via the standard plane wave
impedance '

E, = {(w)B, E, = —{(w)B,
For the EMSLAB data the electric fields correlated with the gradients are much
larger than predicted by the 1-d model and they are, allowing for local surface dis-
tortion, roughly constant across the array.

As we have discused in Chapter 3 (see also Dmitriev and Berdichevsky,
1979) the electric fields over a 1-d earth are related via a convolution operator to
B, and B, on the earth’s surface (see 3.2.2 - 3.2.3). Since the kernel of this operaF

tor is rotationally symmetric, the electric fields are determined by the local value

of B, and B,. The electric fields are completely insensitive to local gradients in

the magnetic fields while the vertical magnetic ficlds B,, are essentially determined

by the local gradients. Thus, for a uniform magnetic field gradient over a 1-d
earth, B, is constant while the electric fields have uniform gradients. Put another
way, finite wavenumber source fields have a first order effect on vertical magnetic
fields but only a second order effect on the electric fields (Mareschal, 1986). Our
results show that the results of the 1-d analysis are not always relevant in 2- and
3-dimensional environments. The results for the electric fields strongly suggest
that finite wavenumber fields can have a first order effect on the electric fields in

some circumstances.

It is noteworthy that the electric fields associated with the gradients are much

larger in the east-west direction. Since the dominant conductivity gradient is
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east-west, this corresponds to the B-polarization or TM mode. We suggest a sim-
ple physical explanation for our results. The east-west electric fields in the region
of EMSLAB array are in part due to the accumulation of charge in regions with
large conductivity gradients - in particular at the continental margin where the
conductive ocean abuts the relatively resistive continental crust. The magnitude of
this charge will depend on the electric fields in the ocean; these fields will in turn
depend mostly on the remote (i.e. over the ocean) magnetic sources. As a conse-
quence, the electric fields at a station on land will depend relatively more on the
magnetic fields to the west than to the east of the station. This asymmetry is pre-
cisely what is required to produce the observed relationship between the gradients

and the correlated electric fields seen in figures 4.14-4.18.

The results here are suggestive, but as we have stressed above, the fact that
gradients can be measured in only one direction makes a quantitative interpretation
questionable at best. In fact, the EMSLAB experiment consists of a large array of
instruments, both on land and on the ocean bottom (The EMSLAB Group, 1987).
When this data becomes available a more careful study of gradient effects on the
electric (and vertical magnetic) fields will be conducted.

We have seen that at least some of the ‘noise’ observed in the electric fields
can be ascribed to source effects. To assess the relative importance of this we
must consider the nature of local noise in the electric fields. In figures 4.19(a) and
(b) we plot the estimated local noise powers for the north and east components of
the electric fields respectively. We see that the noise power is quite variable from
channel to channel, particularly at short periods ( < 300s ) where variations in

noise power between different stations exceed two orders of magnitude. Note that

the spread in noise power decreases with period, but that stations which are quiet -

at shorter periods tend to remain so at longer periods. Note also that at longer

periods the local noise tends on average to be larger in the east-west component of
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the fields. This is probably an artifact of the parameter fitting procedure. We
have fit a model which allows two gradient terms plus local noise. The third,
unobserved gradient has some effect on the electric fields, and this is undoubtedly
greater for the east-west component. Some of this source effect is probably

included in the local noise parameter estimates.

We can use the estimates of power in the plane wave and gradient magnetic
fields, together with the estimates of the amplitudes of the associated electric
fields, to estimate the power in the plane wave and gradient components for each
electric field component. In figure 4.20 and 4.21 we plot these two quantities,
(solid lines are plane wave; dashed are gradients) together with the local noise
estimates (dotted lines) for stations VAL (ﬁgure 4.20) and AME (figure 4.21) on
the EMSLAB profile. In general, we see that there are significant differences
between components and between stations. This reflects both the variability in the
local noise power and the variations of power in gradient related effects caused by
surface distortion. VAL represents a ‘resistive’ site with large electric fields, and
power in the gradient terms is large relative to the local noise. This is particularly
true for the east-west component where the gradient noise exceeds the local noise
by more than an order of magnitude. At this site, where the plane wave signal is
large, the local noise is comparatively negligible at all periods. AME reprcéents
the opposite situation - this is a ‘conductive’ site with small electric fields. Here
gradient related effects are not to dominant. For the east-west component, gra-
dient and local noise are of comparable amplitude while for the north-south com-
ponent, the local noise is larger than the gradient effects. These results show that
deviations of electric field data from the simplifying plane wave assumption can
have very significant source gradiént related components, even at periods of 100
seconds or less. The relative importance of local and source related noise is, how-

ever, highly site, and polarization, dependent.
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In our analysis of horizontal magnetic field data we assumed that the total
fields due to gradients in the soﬁrces had the same simple forms as those obtained
for the 1-d model. In fact, with a 2-d or 3-d conductivity distribution, the total
horizontal fields associated with source gradients will be perturbed from the sim-
ple 1-d form. If we treat the gradient terms as signal we can, as outlined in sec-
tion 4.9, estimate the form of these perturbations (along with the vertical fields
associated with the source gradients). Recall that this is accomplished by treating
additional eigenvectors as signal and fitting a noise model which allows only for
local noise. We find (as illustrated for the EMSLAB line in figures 4.16 and 4.17
above) that these additional eigenvectors typically do resemble the simple form
predicted for the 1-d conductivity case (gradients in the horizontal fields, nearly
uniform vertical fields) plus a perturbation. To get a better picture of the form of
these deviations from the 1-d gradient model for a fixed eigenvector, it is useful to
subtract the best fitting linear combination of the canonical gradient vectors given
in (4.5.2) from the horizontal fields and to subtract the average vertical field from
the estimated vertical field components so that the pcrturbaﬁons can be separated
from the gradients. In figure 4.22 we plot the deviations from the 1-d gradient
~model computed in this manner at three periods for the third eigenvector from MV
array 8. Note that this ‘eigenvector’ is computed from the model which assumes a
response space of dimension p = 5 and fits the local noise structure (so it does not
really represent an eigenvector of the raw SDM). The power in this eigenvector,
relative to the dominant plane wave eigenvectors, is on the order or 1072, and
most of this power is in the relatively uniform vertical fields. The relative power
in the perturbations from the expected gradient vector form is on the order of 1073
or less. These perturbations represent a small amount of the power in observed

fields.
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For reference in figure 4.22(a), we plot the anomalous horizontal and vertical
fields computed for a plane wave source, linearly polarized in the north south
direction. For this plot we have assumed that the average field is normal so these
plots represent the deviations of the total magnetic fields from a uniform north-
south field. The plot of anomalous horizontal fields shows that the horizontal
fields are larger in the center of the array and smaller at the stations on the
northeastern and southwestern edges, while the vertical fields reverse sign between
the northern and southem stations. This pattern of anomalous fields indicates that
there is a region of enhanced conductivity passing through the center of the array.
This conductive anomaly has been more fully mapped, and will be described in
slightly more detail in a regional context in the next chapter. The three sets of
perturbation fields plotted in 4.22(b)-(d) are all very similar in form and, at least
qualitatively, they are quite similar to the horizontal and vertical anomalous fields
plotted in figure 4.22(a). It is thus reasonable to ascribe these fields to current
flowing in the central region of anomalous conductivity. These currents are corre-
lated with the gradients but are not correlated with the two dominant (plane wave)
eigenvectors. Note that the fields of 4.22(a) and 4.22(b)-(c) are scaled in an
entirely different manner; the pattern of variations is all that can be comp.ared
directly.

This is a graphic demonstration of the phenomena of current channeling
(Babour and Mosnier, 1979; Woods and Lilley, 1980; Summers, 1982; Jones,
1983; Harxt et al., 1983; Mosnier, 1985) - a portion of the current flowing in the
anomaly is not coherent with the local horizontal source fields and hence must be
non-locally induced. It is worth noting here that with perfect plane wave sources
all current flowing in the anomaly (indeed all current eQerywhere) will be coherent .

with the local fields, although a substantial fraction of the current may be induced

in a region which is much larger than the array. The effects seen here are due to
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the interaction of the finite spatial scale of the sources with the 3-dimensional con-
ductivity distribution. The magnitude of this effect thus depends on properties of
both the conductivity distribution and the sources. The fact that this effect is as
small as it is does not imply that most of the current flowing in the anomaly is
locally induced. It does imply that most, but not all, of the current is induced in a

region where the fields are highly correlated with the local fields.

The current channeling seen for array 8, and the source field effects on the
electric fields seen for the EMSLAB line, are almost certainly manifestations of
the same physical phenomenon. In both cases the electric fields on the land side
of the coast are influenced by the magnetic ﬁelds over the ocean, and, because of
the finite spatial scales of the sources, these magnetic ficlds are not perfectly
correlated with the local inducing fields. As a result, there is a portion of the
electric fields which is coherent over a large area on land, but which is not
coherent with the local inducing fields. This effect is strongest in the east-west
component of the electric fields, as we have seen for the EMSLAB data. In the
case of MV array 8, which is about 50 kilometers from the coast and straddles an

east west trending conductivity anomaly (which probably is reasonably well con-

‘nected electrically to the ocean), these electric fields lead to anomalous current

flow which is not coherent with the local inducing fields.

In this section we have concentrated on a more or less exploratory analysié of
some of the effects of finite spatial scale sources on magnetic and electric fields
observed in arrays. Our motivation for this analysis derived from our need to esti-
mate the form of the noise covariance matrix in order to carry out the estimation

scheme developed in previous sections of this chapter. In many ways, however,

the results obtained are more interesting for their own sake, at least to anyone with

an interest in the complications of electromagnetic induction by natural sources in

a 3-dimensional earth. It is important at this point to reiterate that the multivariate
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methods developed in this dissertation can be useful both for exploratory data
analysis, and for the estimation of parameters within a formal statistical model.
Although philosophically there is a wide chasm between these approaches to data
analysis, in practice the distinction often becomes a difficult one to make. The
results presented in this section represent only a very tentative exploratory analysis
of the effect of finite wavenumber sources on vertical magnetic and electric fields.
Substantial additional analysis of data and of the physics of electromagnetic induc-
tion will be required to develop an adequate model for these features in the data.
Such a model will be required to carry out the statistical parameter estimation

described in this chapter.
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Figure 4.3(a) 2 goodness of fit statistics plotted vs. period: horizontal field

models for EMSLAB array. 95% critical points (cp) for each model number
is indicated on left edge of figure. (1) Solid line : isotropic errors model (df
= 63; cp = 83). (2) Dotted line : model with local noise only (no gradients)
(df = 44; cp = 60). (3) Dashed line : full model - local noise plus gradients
(df = 40; cp = 56). Isotropic noise model is not adequate at any period. For
periods greater than about 1000 seconds model fit is improved substantially
by inclusion of gradient terms.
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Figure 4.3(b)° %2 goodness of fit statistics plotted vs. period, as in figure 4.3(a)
but plotted on a linear scale. The improvement in fit offered by the full
model is quite dramatic.
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Figure 4.11(a)  Vertical fields B, correlated with observable horizontal gradients
for array 1. Observable gradients are plotted as horizontal field vectors at
each station; correlated vertical fields at each station (real and imaginary
parts) are printed under each station. The array is essentially linear so only
two gradient terms can be reliably estimated for each period.
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Figure 4.11(b)  Vertical fields B, correlated with observable horizontal gradients
for array 1. Only a single gradient term is included for the longest period.
Note that the vertical fields become more uniform at longer periods.
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Figure 4.12(a) xz goodness of fit statistics plotted vs. period for three com-
ponent models for MV array 8. (df is degrees of freedom, cp is 95% critical
point). (1) Solid line : Model 1 - isotropic errors model (df = 168, cp =
199); (2) Dotted line : Model 2 (see text) (df = 113, cp = 139); (3) Dashed
ligc : Model 3 : 5-dimensional response space plus local noise (df = 55, cp =
73).
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Figure 4.13 x2 goodness of fit statistics plotted vs. period for three com-
' ponent models for MV array 1 (df is degrees of freedom, cp is 95% critical
point). (1) Solid line : 2-dimensional response space plus local noise; (df =
124, cp = 151); (2) Dashed line : 3-dimensional response space plus local
noise; (df = 99, cp = 123); (3) Dashed line : Model 3 : 4-dimensional
response space plus local noise (df = 76, cp = 97). (3) Dashed line : Model

3 . 5-dimensional response space plus local noise (df = 55, cp = 73).
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Figure 4.14 " Electric field vectors which are correlated with the gradients of the

horizontal magnetic fields for period of 2700 seconds. From top: (a) Plot of
magnetic field gradient in north-south component. Correlated vertical com-
ponents for each station is printed under station. (b) Plot of electric fields
correlated with the gradient plotted in (a). (c) Plot of magnetic field gradient
in east-west component. Correlated vertical components for each station is
printed under station. (d) Plot of electric fields correlated with the gradient
plotted in (c). The electric field vectors point in the same direction and are in
phase across the array; note difference in amplitudes however. Vertical fields
are roughly equal and in phase; some deviations from this simple picture are
evident.
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Figure 4.15  Electric field vectors which are correlated with the gradients of the

horizontal magnetic fields for period of 900 seconds. From top: (a) Plot of
magnetic field gradient in north-south component. Correlated vertical com-
ponents for each station is printed under station. (b) Plot of electric fields
correlated with the gradient plotted in (a). (c) Plot of magnetic field gradient
in east-west component. Correlated vertical components for each station is
printed under station. (d) Plot of electric fields correlated with the gradient

- plotted in (¢). In contrast to results for 2700 seconds, the electric field vectors
exhibit quite a bit of scatter, both in direction and in phase.
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Figure 4.16  Electric field vectors which are correlated with the gradients of the

horizontal magnetic fields for period of 2700 seconds. For this figure the
gradients and their effects on electric and vertical fields have been treated as
signal and a higher dimensional response space has been fit. Linear combi-
nations of the response space vectors whose horizontal components best fit
the gradient model are plotted here. From top: (a) Plot of best fit of mag-
netic field to gradient in north-south component. Correlated vertical com-
ponents for each station is printed under station. (b) Plot of electric fields
correlated with the gradient plotted in (a). (c) Plot of best fit of magnetic
field gradient in east-west component. Correlated vertical components for
each station is printed under station. (d) Plot of electric fields correlated with
‘the gradient plotted in (c). Results are similar to those presented in figure
4.14. Note that the vertical fields have a much larger amplitude here.
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Figure 4.17  Electric field vectors which’are correlated with the gradients of the

horizontal magnetic fields for period of 900 seconds. For this figure the gra-
dients and their effects on electric and vertical fields have been treated as sig-
nal and a higher dimensional response space has been fit. Linear combina-
tions of the response space vectors whose horizontal components best fit the
gradient model are plotted here. From top: (a) Plot of best fit to magnetic
ficld gradient in north-south component. Correlated vertical components for
each station is printed under station. (b) Plot of electric fields correlated with
the gradient plotted in (a). (c) Plot of best fit to magnetic field gradient in
east-west component. Correlated vertical components for each staton is
printed under station. (d) Plot of electric fields correlated with the gradient
plotted in (c). In contrast to results presented in figure 4.15, the electric field
vectors point in the same direction and are in phase across the array. Results
are quite comparable to those obtained for 2700 seconds.
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Anomalous Fields
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Figure 422 An example of current channeling effects for 3-component MV data
from array 8. In (a) we plot the anomalous horizontal and vertical magnetic
fields for a north-south inducing magnetic field. Normal fields are defined by
requiring the average field to be linearly polarized north-south and of unit
magnitude. The normal field has been subtracted, so the fields plotted here
average to zero. In (b),(c) and (d) we plot deviations of the horizontal fields
for the third eigenvector from the best fitting gradient for three periods.
Deviations of the vertical components of the third eigenvector from the aver-
age vertical field are printed under the station locations. The deviations from
the gradient form for the three periods are very similar to each other and to
the anomalous horizontal fields plotted in (a). We interpret this as a current
channeling effect. Currents, which are induced by non-local sources, and are
hence not coherent with the local horizontal fields, flow in a conductive ano-
maly running through the center of the array.

225

Chapter 5

Extensions and Applications

In this dissertation we have emphasized the development of, and formal
justification for, some new techniques for the analysis of geomagnetic array data.
In this final chapter we provide a summary and overview of these techniques, and

then discuss very briefly some extensions and applications.

For all of the data processing methods discussed in this dissertation, the fun-
damental data vectors consist of the complex Fourier coefficients obtained from
Fourier transforming short segments of a long multi-channel time series of mag-
netic and electric fields measured simultaneously at an array of n stations. These
data vectors are complex, and of dimension 3z (magnetic fields only) or 5n (elec-
tric plus magnetic fields). The methods developed here can be classified as (com-
plex) multivariate statistical procedures, which are based on the sample spectral
density matrix (the Hermetian matrix of second moments of the frequency domain
data vectors). As such, these methods are generally complex analogues of classi-
cal multivariate procedures. Because multivariate methods are based on a simul-
taneous analysis of all data channels, considerably more information can be
obtained from the data than is possible with univariate (e.g. standard transfer func-
tion) methods. As we have seen, the multivariate approach also allows for a rea-
sonable treatment of noise. Our models have included (potentially correlated)

noise in all data channels.

The statistical methods considered in this dissertation are of two fairly dis-
tinct types - exploratory procedures which are designed to discover what sorts of
useful information may be extracted from the data and formal model fitting pro-
cedures which assume a specific, parametrized model for the data and then attempt

to make inferences about the unknown parameters. Although it is not always
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possible to make a clean seperation between procedures of the two types, the dis-
tinction is nonetheless important. The primary exploratory method that we have
used is essentially the method of principal components - the anlysis of the dom-
inant eigenvalues and eigenvectors of the SDM. We considered a number of
applications of this basic method, as well as some variants, in section 2.5. On the
other side of the dichotomy lie the more formal model fitting procedures discussed
in Chapter 4, where we assumed a specific parametric form for signal and noise
components, and developed statistical estimation procedures. Both of these

approaches have an important place in geomagnetic array data processing.

The results obtained in section 2.5 amply; demonstrated the value of a princi-
pal components analysis of the SDM for geomagnetic array data. Consideration of
the dominant eigenvalues and eigenvectors of the SDM allowed us to characterize
many of the basic properties of both signal and noise processes. The random
source model developed in Chapter 3 offered a simple physical interpretation for
the general patterns observed in this exploratory analysis of the eigenvalues and
eigenvectors of the SDM. More importantly, the qualitative analyisis of general
random source models (discussed in section 3.4), showed that we may consider
the eigenvalues of the SDM as a sort of discrete spatial power spectrum for the
random fields. The corresponding eigenvectors represent realizeable fields, and in
general we would expect that the dominant eigenvectors (principal components)
will correspond to relativiey large scale external source fields with simple morpho-
logies. These eigenvectors will also be the least effected by noise. The extraction
of the dominant eigenvectors can thus be thought of as a way to smooth, or aver-
age, a number of events to effectivgly reduce the effects of small scale source field
variations and local noise. These conclusions do not depend in any way on a par-
ticular assumption about the form of the sources. An eigenvector analysis of the

SDM for any array (global or regional) should yield interesting results about both
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the large scale source fields and the (usually much smaller spatial scale) variations

in electrical conductivity.

The theoretical developments in Chapter 2 showed that interstation and inter-
component transfer functions could be justified with complete rigor if the external
source potentials were restricted to a space of finite dimension p. With this finite
dimensional source space assumption, we showed that, in the absence of noise, all
data vectors would be linear combinations of p fundamental basis vectors which
defined the total fields seen at the earths surface for the p possible independent
sources. For the specific case of small arrays, where both the array and the skin
depth are small compared to typical source scales, the model of Chapter 3, and the
exploratory results of sections 2.5, demonstrated that it was reasonable to assume
that the external sources were plane waves of infinite horizontal extent (p = 2).
The finite dimensional source space assumption suggests a formal statistical model
- the errors-in-variables model of Chapter 4. To complete the specification of this
model it is necessary to parametrize the noise covariance matrix. We discussed an
approach to this problem for the special case of small arrays in Chapter 4, and we

found that it was necessary to include the effects of violations of our simplifying

- source assumptions in the noise. Within the assumptions of this model, it is possi-

ble to estimate the response of the earth to plane wave sources, and to assess the
statistical uncertainty in the estimates, including the effects of deviations from the

simplifying source assumptions.

In fact, the exploratory and formal model fitting procedures are not com-
pletely seperate. The justification for the plane wave source model depends in
part on the exploratory analysis. More importantly, the parametrization of the
noise model depends critically on the exploratory phase. On the other hand,

exploratory techniques can be enhanced by a formal model fitting procedure. For

example, many of the results discussed in Chapter 4 would have to be considered
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exploratory. In particular, our findings about gradient related effects in the electric
fields are of this nature. Although we were able to demonstrate the presence of
coherent noise in the electric fields using the purely exploratory techniques of sec-
tion 2.5, the results in Chapter 4 are much more satisfactory. Using the model
fitting methods of Chapter 4 the nature of the coherent noise was delineated, and

the relation of this effect to gradients in the magnetic fields was demonstrated.

While we have tried to keep our discussion of geomagnetic array analysis as
general as possible, all of the real arrays we have analyzed are small (both in
terms of number of stations and in terms of spatial extent). The case of small
arrays is an important one; indeed it was this‘ case which provided the motivation
for this study. Both the random source model developed in Chapter 3, and the
statistical models for the noise covariance dévelopcd in Chapter 4 were geared to
this special case. We summarize the results obtained for this special case and give

a very brief indication of some holes which need to be filled in.

The synthetic models of Chapter 3, together with the exploratory results of
section 2.5 (and Chapter 4), provide a strong justification for the plane wave
source approximation. A first order correction to this approximation can be made
by including a set of three gradient terms in the model. We have seen that for
arrays at geomagnetic mid-lattitudes with spatial extents on the order of 50-200
Km that the horizontal magnetic field gradients are small compared to the uniform
part of the signal. For EDA fluxgate magnetometers at least, we have also seen
that the power in gradient fields is often barely detectable above the local/system
noise, particularly at shorter periods ( < 1000 seconds). At this point it is not
clear how much of the local noise 1n the magnetic fields is cultural and how much

is true system noise, so it is not clear how much this last result depends upon the

specific magnetometers used.
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For the vertical magnetic and electric fields associated with the gradients the
situation is somewhat different. The magnitude of these effects is independent of
array size (but dependent on period) and, at least for longer periods, these effects
can be substantially larger than the local/system noise levels. If the gradients can
be adequately measured (in all directions), the relationship between the gradients
and the associated vertical magnetic and/or electirc fields should be cqnsidered a
potentially very interesting part of the signal. For our situation where gradients
are not adequately determined, however, we have argued that it is most reasonable
to concentrate on.estimation of the plane wave response vectors and treat the hor-
izontal field gradients, as well as the vertical magnetic and electric fields associ-
ated with these gradients, as a source of coherent noise. We have developed a
parametric model which includes this gradient related noise, and have developed
an algorithm for parameter estimation. We have seen that the models generally

provide a reasonable fit to the data, at least for 3-component (MV) data.

Our applications of these statistical modeling techniques to small geomag-
netic arrays is only a beginning. The modelling procedures we have suggested,
while generally succesful, may be unnecessarily complicated. It is entirely possi-
‘ble, for instance, that the noise model of (4.5.7) which includes local (incoherent
between stations) noise and a simple form for source gradient related vertical
fields, may be completely adequate for MV data in small arrays. We need to
carefully compare estimates and estimation errors for various approaches to assess
what complications are truly relevant to routine processing of small array data.
We have much further to go for the case of MT arrays. We have identified gra-
dient related coherent electric fields in the residuals to the plane wave fit, but our
understanding of this effect is, at best, rudimentary. Further study of the
EMSLAB array (with the aid of the much larger magnetometer array) will be

helpful. Comparison to other small MT arrays in different settings (e.g. not so
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close to a coastline) would also be helpful. With a better understanding of these
effects, we can attack the problem of specifying the structure of this source related

noise in the electric fields.

In addition to the problem of model specification, there are other aspects of
the problem which need further work. All of the methods developed here are
based on second moments of the data. They are thus appropriate when the data
has a Gaussian distribution. We already know (Egbert and Booker, 1986) that the
data can not always be treated as Gaussian; for single station transfer function
estimation we have found that robust processing techniques are essential. The
development of robust variants on the estimation procedures described here will
also be necessary. Another area which needs work is in the computation of esti-
mation errors. The estimation errors given in Chapter 4 are only strictly correct
for the case where the noise covariance matrix is known (up to a multiplictive
constant). When the error covariance must be estimated some modifications will
be required.

There are two further extensions of our work which we wish to consider
briefly. The first, which we have already alluded to several times, is to try these
techniques on larger arrays - in particular the global array of magnetic observa-
tories and the full EMSLAB array. In both cases many of the specific methods
developed in this dissertation will not be particularly relevant. However, as dis-
cussed above, the exploratory aspects of our approach can easily be justified, and
should prove interesting. In the case of the global array, Schultz and Larsen
(1987) have applied transfer function methods to the analysis of observatory daily
mean values. This required assuming a specific form for the external sources (the
potential was assumed to be the P‘l’ spherical harmonic, see Schultz and Larsen, .

1984). If this assumption holds, the response space should be one dimensional,

and a multiple station estimation of the P{ response should be straightforward. If
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this assumption does not hold exactly, the manner in which it fails should be
revealed by a multiple station analysis. If, as seems likely, more complicated
models of the source are required our multiple station technique should prove

flexible enough to allow for this.

Application of these techniques to large regional arrays (such as the full
EMSLAB array) should also prove fruitful. For such a large array (but note: the
EMSLAB array is still substantially smaller than typical source length scales) the
gradient terms will be quite significant, and they will probably be mixed with the
plane wave terms. Additional, source related shorter wavelength features may also
appear in the eigenvectors of the SDM. Sorting all of this out may prove to be a
significant task, but the dominant few eigenvectors will still be very interesting.
With present methods of analysis the large scale overview of a regional array like
this is provided by one or maps of specific events (e.g. The EMSLAB Group,
1987). Plots of the dominant eigenvectors of the SDM (or rather of linear combi-
nations chosen to provide simple source polariaztions) would certainly serve this
purpose in a far better manner. These will correspond to external sources of the
largest possible scale, which represent averages of many events. Such maps will
- thus combine the advantages of transfer function approaches with the advantages

of traditional event maps.

The second extension which we wish to consider is to the case where a
number of small overlapping arrays have been run. If two arrays have a station in
common the plane wave response spaces estimated for each array seperately can
be combined to estimate a plane wave response space for a combined array. This
can be accomplished simply by treating the overlapping station as 'normal’ and
computing the fields in each array relative to the common station. We give an
example of this for two overlapping arrays in southwetern Washington in figure

5.1 (array 8, which we have used for some of the examples discussed in Chapter

232

4, and array 10, a more or less north-south line of five statiohs; see inset fro array
location). Note that the common station (the western station in the two arrays)
need be treated as normal only for purposes of forming the combined response
space; after the arrays are combined any other definition of normal fields may be
used. In figure 5.1 we have chosen the southernmost station és normal for pur-
poses of defining the anomalous fields, which are plotted here for a north-south
source polarization at a period of 300 seconds. The anomalous field plots show ank
enhancement of horizontal fields in the center of the array and a reversal of sign
of the vertical fields in the same region. This is consistent with a concentration of
anomalous currents in the center of the array. We have already encountered this
conductivity anomaly in our discussion of current channelling in Chapter 4. Note
that there is a substantial turning of the currents to the northwest in the center of
the array. This is presumably due to deflection by a region of high resistivity in
the crust in the southwestern part of the region plotted. This region coincides with

a high in the Bouger gravity, which is also contoured in figure 5.1.

This simple approach to combining arrays through a common reference sta-
tion has been described (with transfer function terminology) by Beamish and
Banks (1983) who used this technique to form a synthetic large array from a
series of smaller arrays run simultaneously with a single fixed reference station.
We wish to consider here the more general case where a number of small arrays
overlap without any fixed reference station. This is the case for the set of arrays
plotted in figure 2.1 - all arrays were overlapped with other arrays and the over-
laps are such that all stations can be linked together, but there is no single refer-
ence station. The simple approach of using the overlapping station as a reference
can also be used for this case. We give examples of the horizontal fields com-
puted using this approach for a 41 station synthetic array in figures 5.2 (east-west

polarization) and 5.3 (north-south polarization) for a period of 900 seconds. For
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these plots the normal field has been taken as the regional average, using the con-
straint discussed in section 2.4. Assuming that for the normal fields, half of the
fields are internal and half external, we have subtracted half of the assumed nor-
mal field. The plotted field vectors thus represent an approximation to the total
internal fields. For comparison we also present, in figures 5.4 and 5.5, ‘hypotheti-
cal events’ (Bailey et al., 1974) computed from a series of single station vertical

field transfer function estimates for the two polarizations for the same array.

In addition to the coast effect (clearly visible in the vertical field plots of
figure 5.3), there are two major anomalous features in this region, both of crustal
origin. The most significant is a conductivit'y anomaly which goes east-southeast
out of Puget Sound for roughly 25 kilometers, and then south-southeast under the
Cascade range. This anomaly is cleraly cﬁdent in the hypothetical event plots
(for both polarizations) as a reversal in sign of the fairly large anomalous fields in
this region. The anomaly is also quite evident in the horizontal field plots con-
structed from the multiple station analysis. At some stations in the center of the
anomaly the fields are more than double the normal (average) value. Since the
anomaly is large in both polarizations, a significant fraction of the anomalous
currents must be channeled by the 3-dimensional geometry of these crustal con-
ductivity variations. Note also that the deviations in direction of the horiiontal
field vectors are all consistent with current being channeled through a narrow
region of high conductivity under the Cascades. This anomaly has been reported
previously by Law ez al., 1980 and Stanley (1984). The second major feature is
the one discussed above (figure 5.1) and in Chapter 4 (current channeling in array
8). This feature consists of an essentially east-west conductive anomaly which is
clearly evident in the vertical ﬁeld plots for the north-south polarization (figure
5.5). The ﬁ;lds (particulary the horizontal fields) for this anomaly are consider-

ably smaller than those of the Cascade anomaly to the east. A more
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comprehensive analysis of the anomalies in the region covered by this array will,
in the near future, be the subject of a more thorough application of the methods

discussed in this dissertation.

With a complex series of arrays with no single reference station there may be
many ways to connect the small arrays together using the simple overlapping
reference station method. In this case the final answer depends upon the choices
of reference stations, Furthermore, such simple methods use only a fraction of the
available information for combining arrays. We close this dissertation with a
sketch of an approach to combining arrays which does not suffer from these
defects. The method arises naturally from our reéponse space approach and is
based on a direct generalization of the single station estimation criterion given in
(4.1.2). We consider K overlapping arrays with array & consisting of my total
channels of data, sampled in N, windows. The total number of component-
stations is M (i.e. for 3-component data measured at a total of n station distributed
over a number of arrays M = 3n). Let Z; denote the m;xN, data matrix for the kh
array, and let %, be the estimated error covariance for the k' array. Let V be the

Mx2 matrix whose columns are the plane wave response vectors for the M station

‘synthetic array, and let P, be the mxM matrix which projects the response vectors

of V onto the coordinates of the components actually measured in the K* array (so
that the columns of P,V define the plane wave response space for the K" array).
For each k let ¥, be the 2xNV, matrix giving the polarization parameters for the

events of the k¥* array. We propose minimizing
S .
J=ZIE E - PVEDI (5.1)
k=1

over V and the K matrices of nuisance parameters ¥;. Note that the multivariate
errors-in-variables estimate used for single array estimation minimizes this quan-

tity with K=1.
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The function J can be written in terms of the eigenvalues and eigenvectors of

the individual spectral density matrices S,. Specifically, let = LA,

P’, = £,4P, and form the singular value decomposition of o

E = U Wi

Then it can be shown that we can rewrite J as

K K
J=3 IUAW, - P V¥ = 3 |IT, - P, VIl (5.2)
k=1 k=1

where ¥ = ¥ W, are 2xm, matrices of nuisance parameters, and
T, =UdA, = Sz can be formed from the eigenvalues and eigenvectors of the

SDM 8§, for the K array. If V were known the ¥';’s which minimize (5.2) are

¥, = (ViVo VT where V, =P,V

On the other hand, with the ¥,’s known, finding V to minimize J can be reduced
to a standard least squares problem. These observations suggest an iterative
scheme for minimizing J. Using a simple approach for combining arrays, such as
one outlined above, we may obtain a starting estimate of the synthetic array
response space vectors V. These can be used to estimate the ¥;’s, which can then
be used to improve the estimate of V. This estimation scheme must still be tested
with real data, and the derivation of estimation errors has not yet been attempted.
Note also that this approach to combining arrays can also be used to treat the case

of missing data when estimating the response plane for a single array.

The methods developed in this dissertation have the potential to allow for a
substantial improvement in the treatment of source effects in the analysis and
interpretation of data from small geomagnetic arrays. With improvements in the
basic methods outlined here, with better instruments, and with some care in the

layout of stations, it should be possible to minimize the effects of finite spatial

S e R e

236

scale sources on plane wave response estimates and to extend the range of useful
information to include gradientr responses. With the development of optimal
methods for combining small arrays, we will have the ability to apply these
methods to the detailed mapping of the conductivity variations of the earth over
large areas. These techniques thus have the potential to make possible with small
arrays many things which have been thought possible only with much larger
arrays. Given the current cost of instrumentations for a large array, the advan-

tages of our methods for small arrays could be very significant.
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Figure 5.1  Anomalous horizontal and vertical fields for a small synthetic

array in Southwestern Washington (inset gives array location); fields are
superimposed on a contour plot of Bouger gravity anomaly. The array was
constructed from two smaller overlapping 5 station arrays. The period is
300 seconds; source polarization North-South. The southernmost station
has been chosen as the normal. Real parts of anomalous horizontal fields
are plotted as vectors; real parts of vertical fields are written under the sta-
tion location. The imaginary parts show a similar pattern and imply that
the anomalous fields lead the normal fields by about 20 degrees (so struc-
ture is fairly shallow). Horizontal fields are enhanced in the center of the
array and there is a reversal in the sign of the vertical fields coincident
with the largest horizontal fields. Note the substantial turning of the
anomalous fields in the center of the array. The anomalous currents
appear to flow out of the east and turn sharply to the north. This is
presumably due to deflection by a region of high resistivity in the crust in
the lower left hand corner of the figure. Note that this region coincides
with a high in the gravity.
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Figure 5.2  Approximate real part of horizontal fields due to internal currents
for a synthetic array constructed from a series of small (3-5) station arrays.
The external source polarization is defined by assuming that the average
field is normal. We then find the vector in the response plane whose aver-
age over all stations corresponds to a total field of unit magnitude linearly
polarized in the north- south direction. The assumed external field (one
half of the normal total field) is subtracted from the field vector at each
station before plotting. The variations in horizontal field magnitudes are
fairly subtle, but several zones of enhanced current flow can be seen.
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Figure 5.3  Vertical field hypothetical event for array in Southwestern Wash-
ington for north-south inducing fields. The large conductive feature under
the Cascades evident for this source polarization is larger for the other
polarization (figure 5.5). The smaller east-west trending anomaly midway
between Puget Sound and the mouth of the Columbia river is shown in
more detail in figure 5.1.
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Figure 5.4  Approximate real part of horizontal fields due to internal currents
for a synthetic array constructed from a series of small (3-5) station arrays.
The external source polarization is defined by assuming that the average
field is normal. We then find the vector in the response plane whose aver-
age over all stations corresponds to a total field of unit magnitude linearly
polarized in the east-west direction. The assumed external field (one half
of the normal total field) is subtracted from the field vector at each station
before plotting. The horizontal fields over the center of the conductivity
anomaly are more than twice the normal (average) fields.
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Figure 5.5: Vertical field hypothetical event for array in Southwestern Wash-
ington. The real part of the response in Z to linearly polarized east-west
inducing fields is contoured (period = 300 seconds). Dashed contours are
negative, solid positive. A significant conductive feature under the Cas-
cades is clearly delineated by the sharp reversal of the sign of Z.
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Appendix A

Biases in the Plane Wave Eigenvectors

In chapter three we developed a random source model to study the properties
of the SDM for small arrays. The model assumed that conductivity was 1-d and
that the source potential could be treated as a spatially homogeneous random field.
Under these assumptions we have seen that the dominant two eigenvectors of the
SDM correspond very closely to uniform plane wave sources. In this appendix we
consider (somewhat schematically) the effects of violations of these assumptions

on our conclusions.

The seperation of the plane wave and gradient terms into separate sets of
eigenvectors depends on two facts. First, for any plane wave vector v, and any

gradient vector v, we have v,v

2 Vg =0 - the plane wave and gradient terms are

orthogonal. Second, as a consequence of our assumption of spatial homogeneity
the plane wave and gradient terms are uncorrelated (as discussed in section 3.7).
To understand the consequences of violations of these conditions we consider a
simple model. Suppose, for simplicity, that the data vectors are linear combina-

tions of a single plane wave term and a single gradient term

X =0,v, + 0.V, (A.1)

and let the covariances of the random coefficients in (A.1) be
E(o,0) = 1 E(o,0p) = € E(a,0u5) = pE

so that the ratio of the power in gradient term to the power in the plane wave term
is €2 and the (complex) correlation of the plane wave and gradient terms is p.

Then the expectation of the SDM has the form
T = E@S) = E(XX") = V,v, + pev,vy + pEV,Y, + E2V,V,

The dominant eigenvector of £ will not in general be v, Thus the dominant

eigenvector of S, ¥,, will in general be a biased estimate of v,. We calculate the
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magnitude of this bias.

We first consider the case where the gradient and plane wave terms are corre-
lated (p # 0). To do this we use the approach of section 4.2. Let P = vpv; and

let P = i’pf';. Then using (4.2.3) and simplifing the resulting expression slightly,

we have, correct to first order in &,
P =P+ 2eRe[ pv,v; ] (A2)

For this case (corresponding to the case of non-homogenous sources) the bias is

thus of order €lpl.

The case where the gradient and plane wave vectors are not orthogonal (this
will occur in the general case where there are anomalous horizontal and vertical
fields) is treated in a similar fashion. Assurhing now that p = 0 defining P and P

as above, and letting & = v;vg we find, correct to first order in 2

P =P + €2 2Re[Ev,v,] (A3)

For this case, then, the bias is of order IEl2. Unless anomalous fields are very

large, the perturberd plane wave and gradient terms will still be nearly orthogonal

and we will have [§| « 1. Since typically € « 1, this bias is usually very small.




Appendix B
Assymptotic Distribution of the Complex MEV Estimates

In this appendix we sketch the derivation of the assymptotic distribution of

the estimates T of section 4.1.

First, a few basic facts about moments of the complex multivariate Gaussian
distribution. Suppose that the random complex vector Z has an m-variate complex
Gaussian distribution with mean zero and covariance matrix I,,. Then Z = X + iY
where X and Y are independent mean zero m-variate real Gaussian random vec-
tors each with covariance matrix %I, (e.g. Brillinger, 1981). Using these facts
and standard results about the moments of real Gaussian variables the following

are easily derived:

(B.1)  odd moments are zero; e.g. E(ZZZ) =0
(B2) E@ZZ)=35;but EZZ)=0
(B3) Cov(ZZ;, Z;Z;) = EZZZ;Z;) - E(ZZ)) E(Z;Zp)" = 887

(B.4)  Real and imaginary parts of cross product terms such as Z,Z} where i # j

‘are uncorrelated; each has variance one half.

These results imply that if Z; i = 1, N are independent m-variate Gaussian

N
random vectors with covariance matrix I, and if S=~1 Y, Z.Z; then the ele-
&1

ments of S on and below the diagonal are uncorrelated with each other. Elements

on the diagonal are real and have variance N~ 1 while the real and imaginary parts

of the off diagonal terms are uncorrelated and have variance @N)L,

We now consider assymptotics for the SDM S when the model of (4.1.1)

holds. We follow Gleser (1981) closely. All notation and assumptions are as in .

section 4.1. In particular the ajk's are thought of as fixed but unknown parameters

(they are not random). Let Y; = UQ; then we may write (4.1.7) as
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Z;=ee; -0, +Ye! +¢Y;
The random matrices Z;, i = 1, N are independent, but not identically distributed.
A simple calculation and application of (B.1), (B.2), and (B.3) yields
EZjZip) = 0* 88y + 6% [Y¥ 8y + Y3 ¥ 5] (B.5)

Note that this is not the same as in the real case treated by Gleser.

_ N
Let Z=~N"1Y Z; Lemma 4.4 in Gleser can be adapted to show that pro-

=1
vided the limit
lim ¥ aa’ = X,
N—co

exists the elements of the complex random matrix N%Z are assymptotically com-

plex multivariate Gaussian with mean zero and covariance

N
lim - Cov(N%4Z,,, N4Z,,) = lim N-1¥ E(Z..Z.
om WN"Zj, N*Zpy) Nesoo ;=Zl Zijliye)

= 0“8 + 0 (O + Ediedyy 1 (B.6)

Since S = X + Z, this specifies the asymptotic distribution of S.

We next consider the computation of the asymptotic distribution of the esti-
mates T. Let

0=-L' I, +TT)y (I, T") ¥ = [_ir ‘ ] B.7)
m-p

and let G = N4Z. Then results given in Gleser for the real case can be adapted to
show that the asymptotic distributions of N*(T' — T) and [ ©G¥ ] are identical.

We can thus conclude that ¥4(T —T) is asymptotically Gaussian with covariance

COV( ('i' - T)U’ (T - T)i'j' )= Z Oikﬁirgw,j\prf E(G[de’l’) (B.8)
2144

where the covariances of the elements of G are given in (B.6).
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Substituting the covariances from (B.6) into (B.8) and simplifying we find

Cov( (D), Miy)
= N Ho*(@0"), (¥ V)] + 62 {(OZ,0");: (¥ )]

Noting that
00" = (P + T'T) 'z} Y = (I, + TT")
we find

Cov((D)y, (1)) . - ®9
— a-lee2 291 * 1 1 *
=nlo [cz; (Ip+TT)z; +>:;]ﬁ,[1m_p+TT ]ﬁ,

Note that this result is identical (after substituting conjugate transpose for all
occurences of transpose in matrix operations) to that given by Gleser for the real
case although the same substitutions will not yield the correct asymptotic distribu-

tion of Z.

Appendix C
Parameter Identification Theorems
Theorem] : Suppose X = Eg(t) + Zn(0) where T = (T, X,) as in (4.4.1) and where
¥y has the block diagonal form of (4.4.2) with kxk matrices on the diagonal.
Suppose that X, is non-singular (of rank p) and that whenever the k rows of

corresponding to any block on the diagonal are deleted from U, the remain-
ing rows of U can be rearanged to form two disjoint matrices of rank p.

Then the parameters of Zg and Zy are uniquely determined (identified).
Proof: Let
A =UZ?

so that Tg = AA". Note that since the i row of A is just the i*" row of U post-
multiplied by the nonsingular matrix X%, the conditions of the theorem hold for A
whenever they hold for U. Thus it suffices to prove the theorem with A in place

of U.
Suppose then, that
AA* +Zy=LL* + Iy
We wish to show that A = L. Note that the elements of AA" and LL® that are
not in the diagonal blocks must be equal (since the corresponding elements of Ty
and X'y are zero). We must show that the elements on the diagonal blocks are
also equal. The condition of the theorem implies that we may reorganize the rows

of A (and the
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corresponding rows of L) as

Ap Lp
A= A, L= L,
As Ly

where Ap, Lp are the deleted rows and where A,, A, are non-singular pxp

matrices. Write out the product AA” as a partitioned matrix

AMA] AAL AN AA;
ApAT ApAp ApA; ApAs
AA] AADL  AAS  ApAs
AA] AsAL AsA;  AsAz

AA* =

and do the same for LL*. Since the elements of AA® and LL* which are not in
the diagonal blocks are equal we have A;Aj, = LLj, and AjA; = LiL;. We will
now show that ApAp = LpLy,.
Let I; be the i* column of A;Aj=L,L} and let [ be the /* row of
ApA; = LpL; and form the (p+1)x(p+1) matrices
L (AAY i (AAY
A= * * B= * *
(ApAp)i I | LpLlp); L2
A and B are submatrices of AA* and LL® respectively. Since AA" and LL" are
of rank p, A and B are singular and hence have determinants equal to zero.
Expanding the determinants, we may write
0 = lAl = (-1 (ApAp); IA1A7] + fIA) = (=1 (LpLp); 1A A7l + flA) = IBI

where f{A) is a function which depends only on the elements of A. Since A; and

A are non-singular, we have IA;A5l # 0. Thus we conclude
(ApAp);j = (LpLp);

Since this argument holds for any ij and for any block on the diagonal we are
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finished.

Theorem 2: Suppose X = Zg+ X\(0) where X¢ is fixed and of rank p with

IZ6l = 1. Let Xg= f‘, yvv; and let Pp = f‘, v,v; and Qg =1, — Py be the

=1 i=1

projections on to the response space R and its orthogonal complement.

Suppose that there are d, M such that whenever
IQrL Zn(81) — Zn(82) 1Qgll < &
then

| Zn(01) — Zn(0y) | < M || Qrl Zn(0)) — Zn(0) 1Qg Il (C.1)
Then there is € > O such that when || Z\(0)l| < € the parameters are uniquely
identified - i.e. if © is such that || Zy(0) || < € and Xg + Zy = I’ + Zp(0)
then Xg = Z¢" and 8; = 0,.
Proof: We begin with a simple lemma:

Lemma: If A, B are positive semi-definite Hermetian matrices, then

IAlL IIBll < lIA + BI.

Proof of Lemma: First note that, for non-negative definite matrices A,
Tr[A] 2 0. Also, for square matrices A, B, Tr{AB] = Tr[BA], so we can write

for positiye semi-definite Hermetian matrices A, B
Tr[AB] = Tr[A*%A"%'B] = Tr[A%*'BA%] > 0

where the inequality follows from the fact that A%*BA* is positive semi-definite.
Then |

IA + B|| = (Tr[(A + B)(A + B)'])*

= (Tr[AA"] + Tr[AB + BA] + Tr[BB*))*
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> (Tr[AA"] + Tr[BB']))” > ||A]], |IB]|

Proof of theorem: Fix Z¢ and let A be any mxm complex Hermetian matrix.
Let Pp, P denote the projections onto the subspaces spanned by the eigenvectors
associated with the largest p eigenvalues of X¢ and A respectively. Theorem 1 of
chapter 4 implies that the mapping A —> P is continuous (with respect to the norm

[ID. Thus there are &, K > 0 (which depend on Xg) such that such that

Pz — P|| < K& whenever X5 — Al < & (C.2)
Pick
€o < min[8/2, §72M, (AM(K?*+K))™! ] (C.3)
Then suppose
I =3¢+ Z\(0) X=X + Z(0) (C4)
and
120 [l<e<g (C.5)

Since for any projection matrix P and any matrix A, ||API, ||PA|| < [lA]l, and since
QrZQg = QrINQg = Qg( T’ + Zp(0") )Qp
we have

e> [ Zy(®) I > Il Qr Zn(0) Qg Il = Il Qr Zs" Qg + Qg Zn(0") Qg |l
Hence by the lemma

Il Qr Z:0) Qg Il <€

so that

| Qr [ZM(6) - Zp(087] Qr Il < 2¢

and hence,
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15— Z5' Il = Il Zn(8) - Zy(®) | = y < 2Me < & (C.6)

Letting R’ be the response space for X¢” and applying (C.2), we can write
Pp =Pr+ A where [[All<KY. Let Qp =Iy—Pp=Qp—A. Then, since
Qr Zs =25 Qr =Qp Zs' =0,
Qr Iv(0) Qp = Qe L Qp = A Zg A + Qp Zy(0) Qp
and so, letting C = (Zy(0) — Z\(0")) we have
Qr CQr=AZA CD
Thus
QrCQr=Qr+A)CQp+A)
=AZA+Qp CA+ACQp +ACA (C.8)

Now, for any matrices A, B the matrix norm ||-|| satisfies ||A + BJ| < ||All + ||B]| and
IIAB]| < JIA]l IIBll. Hence using (C.3),(C.6) and (C.8) we find

1= lICll < Qg C Qgll S K* + 2KY* + K*¥ (C.9)
Suppose ¥ > 0. Then, provided we take y < 1, (C.9) implies
y2 (K2 + 26
But by (C.3) and (C.6)
¥ < 2Me < 2K? + 2K)!
Hence the only way (C.9) can be satisfied is to have Y= 0 so that
Ip(0) = Z\(0) Yo=2Xg

and we are done.




Appendix D
Covariance Matrices with Linear Structure

The model for the noise covariance matrix used in chapter 4 takes the general

form
Sy=Y I ¥ + diag(L,, - , %) (D.1)

where Zg is gxg and the matrices X, i=1, nare IxI. In this appendix we show
how to write this model as a linear combination of known complex matrices with

real coefficients. First, to simplify notation let
(Zp)jk = Tik Ejk = Ok

Let y; be the /* column of ¥, and let E;; be the matrix for which the jk element

in the i** diagonal block is 1 and all other elements are 0. Then we can write
Iy = 3 TV We + 2’:. O ik (D.2)
Jjk ij

This gives an expression for the noise covariance matrix as a linear combina-
tion of known matrices, but the parameters T, O are in general complex. Furth-
ermore, because the matrices Xy and X;, i = 1, n are Hermetian, these parameters
are not all independent (e.g. Ty = 1:,; ). We can easily rewrite this so that the
parameters are real and independent. If ¢ =a +ib is a complex number and

A = R + iP a complex matrix then a simple calculation shows

A+cA =a[R+RDH+i®P-PDH 1+ (D.3)

b[-®+PH+iR-RN]

Terms in the sum of (D.2) with j# k occur in conjugate transpose pairs
TiWWk = (TW¥;). For j # k identify Wj¥; with A in (D.3) and let

Yir=[R+RH+i®-P)]
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Yyr=[-®+PH+iR-R]

For j = k let Y;; = wjy;. Then the first sum in (D.2) can be written
Z Tjk\lfj\v; = Z TﬂY]] + E ( Re‘tjk Yljk + Im’tjk Y?Jk )
Jk J j>k

Since the diagonal terms T; are real this sum is over the independent q* real
parameters which make up the elements on and below the diagonal of the parame-
ter matrix }:B The second term in (D.2) is treated in a similar manner. Thus,
changing notation slightly, the i:nodel for the noise covariance matrix is of the gen-

eral form

Zy(8) = 3" 0Y; (D.4)
=1

Theorem 3 shows that if the noise covariance model is a linear model of the
form (D.1), then condition (4.4.3) of theorem 2 holds, so that such models have
identifiable parametrizations if the signal to noise ratio is large enough. We prove

this theorem here.

. r )
Theorem 3: Assume Z\(0) = ¥, 6,Y; where the Y; are known matrices. Let P be

i=1
any projection matrix. Then, if the r matrices Y/ =PY,P are linearly
independent, there is M such that for all 6;, 6,

| Zp(01) — Zn(02) Il < M || PL Zp(0;) — Zn(0) 1P |l (D.5)

Proof: We first define two matrix operators which will be useful to us. For
any mxn matrix A = (a; - a, we will denote the mn dimensional vector con-
sisting of the m columns of A stacked one on top of the other

vec(A) = (a] | --- 1al)l. If A and B are mxn and pxq matrices we can form

the mpxnq matrix
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auB al,,B
AxB =
B

. amn

amlB

Then it is easily shown that for any matrices A, B, C of appropriate dimensions
vec(ABC) = [A x C] vec(B) (D.6)

Note also that [[A]] = Tr{A’A] = [lvec(A)ll,, where |I|l, denotes the usual Euclidean

norm.

Then define the m?-dimensional vectors

yj=vee(Yy), j=1r o; = =vec(Ty(®)) i=1,2
and the m®xm? and m®xr matrices
II =PxP TF=(y " ¥)

Since the noise covariance matrices Zp(0)), i = 1, 2 satisfy the linear model (D.4)

we have

c; -0, = I'[0; —0,] (D.7)
" Now by (D.6), vec(PYjP) = Iij, so the linear independcncc of the matrices PY,-P
implies that the m?xr matrix IIT is of full rank r. We may thus solve (D.7) for
9, -6y

0, - 6, = [['II'TIT'"II' {6, - 0]
o using ©0)
o; - o, = [ ("' I I’ [ (o, - 6 ] (D.8)
Letting |
M= || TCIODr'm ||

and using the fact that |JABJ| < ||A]] liB}} together with (D.6) we have
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| Zn(0) — Zn(®) I =l 61— G2 | S M [ TI(G; — ) |

=M | P (Sn0)) — ZN0) P |

and we are done.
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